coordinate attention怎样加在resnet18的什么位置,请给我相关代码
时间: 2024-05-03 11:17:12 浏览: 95
coordinate.rar_EJ2_MATLAB coordinate_coordinate在matlab_matlab 平行
在将注意力机制引入ResNet18之前,需要先定义Coordinate Attention Layer。以下是Coordinate Attention Layer的代码:
```python
import torch.nn as nn
import torch.nn.functional as F
class CALayer(nn.Module):
def __init__(self, channel, reduction=16):
super(CALayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_du = nn.Sequential(
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
nn.Sigmoid()
)
def forward(self, x):
y = self.avg_pool(x)
y = self.conv_du(y)
return x * y
```
然后,在ResNet18中添加Coordinate Attention Layer,代码如下:
```python
import torch.nn as nn
import torchvision.models as models
class ResNet18_CA(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18_CA, self).__init__()
self.resnet18 = models.resnet18(pretrained=True)
self.ca = CALayer(512)
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
x = self.resnet18.conv1(x)
x = self.resnet18.bn1(x)
x = self.resnet18.relu(x)
x = self.resnet18.maxpool(x)
x = self.resnet18.layer1(x)
x = self.resnet18.layer2(x)
x = self.resnet18.layer3(x)
x = self.resnet18.layer4(x)
x = self.ca(x)
x = self.resnet18.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
在这个例子中,我们将Coordinate Attention Layer添加到ResNet18的最后一个残差块中。更具体地说,我们将其添加到ResNet18的第四个残差块中,这个残差块包括两个基本块。在这个代码中,我们只使用了一个Coordinate Attention Layer,它被应用于整个残差块中的输出。
阅读全文