clf = gcForest(shape_1X=(1, 3), window=[2])举例说明
时间: 2023-06-02 22:05:25 浏览: 132
这是一个使用gcForest算法构建分类器的代码示例。gcForest是一种基于随机森林的深度森林算法,具有较高的准确性和效率。该代码中的shape_1X和window参数用于定义输入数据的形状和滑动窗口的大小。具体实现可以参考相关文档和代码库。
相关问题
import pandas as pd import numpy as np from sklearn.datasets import load_digits from sklearn.metrics import * from sklearn.cluster import * digits = load_digits() digits_X = digits.data digits_y = digits.target n_clusters = 10 clf =(n_clusters=n_clusters, random_state=0) clf.load_digits() result = homogeneity_completeness_v_measure(digits_y, clf.labels_)
在你提供的代码中,有一些问题需要修改才能正确运行。
首先,你在定义 `clf` 时缺少了 `KMeans` 这个类的名字,应该改为:
```python
clf = KMeans(n_clusters=n_clusters, random_state=0)
```
接着,你需要用 `clf.fit()` 方法来拟合模型,而不是 `clf.load_digits()`。
最后,你可以使用 `homogeneity_completeness_v_measure()` 方法来计算聚类结果的完整性、同质性和V-measure值。需要注意的是,这个方法需要传入真实标签和预测标签两个参数,因此我们需要用 `clf.predict(digits_X)` 来获取预测标签。修改后的代码如下:
```python
import pandas as pd
import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import *
from sklearn.cluster import *
digits = load_digits()
digits_X = digits.data
digits_y = digits.target
n_clusters = 10
clf = KMeans(n_clusters=n_clusters, random_state=0)
clf.fit(digits_X)
result = homogeneity_completeness_v_measure(digits_y, clf.predict(digits_X))
print("Homogeneity: {:.3f}, Completeness: {:.3f}, V-measure: {:.3f}".format(result[0], result[1], result[2]))
```
希望这个回答对你有所帮助!
import pandas as pd import numpy as np from sklearn.datasets import make_classification def decision_tree_binning(x_value: np.ndarray, y_value: np.ndarray, max_bin=10) -> list: '''利用决策树获得最优分箱的边界值列表''' from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier( criterion='', # 选择“信息熵”或基尼系数 max_leaf_nodes=max_bin, # 最大叶子节点数 min_samples_leaf=0.05) # 叶子节点样本数量最小占比 clf.fit(x_value.reshape(-1, 1), y_value) # 训练决策树 # 绘图 import matplotlib.pyplot as plt from sklearn.tree import plot_tree plt.figure(figsize=(14, 12)) # 指定图片大小 plot_tree(clf) plt.show() # 根据决策树进行分箱 n_nodes = clf.tree_.node_count # 决策树节点 children_left = clf.tree_.children_left children_right = clf.tree_.children_right threshold = clf.tree_.threshold # 开始分箱 boundary = [] for i in range(n_nodes): if children_left[i] != children_right[i]: # 获得决策树节点上的划分边界值 boundary.append(threshold[i]) boundary.sort() min_x = x_value.min() max_x = x_value.max() # max_x = x_value.max() + 0.1 # +0.1是为了考虑后续groupby操作时,能包含特征最大值的样本 boundary = [min_x] + boundary + [max_x] return boundary if __name__ == '__main__': data_x, data_y = make_classification(n_samples=, n_classes=, n_features=, n_informative=, random_state=) bin_result = decision_tree_binning(data_x[:, 0], data_y, max_bin=) bin_value = pd.cut(data_x[:, 0], bin_result).codes # 分箱的结果这个代码错在哪
这段Python代码使用了pandas、numpy和sklearn库,通过make_classification函数生成分类数据集。函数decision_tree_binning利用决策树算法得出最优分箱的边界值列表。使用sklearn库中的DecisionTreeClassifier函数进行决策树的训练和预测,并通过设置criterion参数来控制采用的目标函数。
阅读全文