优化 from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV # Load data and split into training and testing sets X_train, X_test, y_train, y_test = ... # Create AdaBoost classifier with decision tree as base estimator adaboost_clf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=100, learning_rate=0.1, algorithm='SAMME.R') # Perform grid search to find optimal hyperparameters param_grid = {'n_estimators': [50, 100, 200], 'learning_rate': [0.05, 0.1, 0.2]} grid_search = GridSearchCV(adaboost_clf, param_grid=param_grid, cv=5) grid_search.fit(X_train, y_train) adaboost_clf = grid_search.best_estimator_ # Train classifier on training set adaboost_clf.fit(X_train, y_train) # Evaluate performance on testing set accuracy = adaboost_clf.score(X_test, y_test)
时间: 2024-04-27 20:23:06 浏览: 158
RandomForest_sklearn.zip_sklearn_sklearn RF_southern9qq_随机森林
这段代码使用了AdaBoost分类器,并对其进行了优化。AdaBoost是一种集成学习算法,它通过组合多个弱分类器来构建一个强分类器。在这段代码中,基础分类器采用了决策树,并设置了n_estimators、learning_rate和algorithm等超参数。
接下来,使用GridSearchCV函数对超参数进行网格搜索,以找到最优的超参数组合。param_grid参数指定了n_estimators和learning_rate的取值范围,cv参数指定了交叉验证的次数。GridSearchCV函数会遍历所有可能的参数组合,并返回最优的参数组合。
最后,使用最优的超参数训练AdaBoost分类器,并在测试集上评估其性能。使用score函数计算分类器在测试集上的准确率。
阅读全文