变邻域搜索算法求解置换flow shop的python代码
时间: 2023-12-20 11:57:08 浏览: 62
Python实现自适应大邻域搜索算法解决TSP问题
5星 · 资源好评率100%
以下是使用变邻域搜索算法求解置换flow shop问题的Python代码:
```python
import random
def calculate_cmax(permutation, processing_times):
n = len(processing_times[0])
m = len(processing_times)
cmax = [0] * n
for j in range(n):
if j == 0:
cmax[0] = processing_times[permutation[0]][0]
else:
cmax[j] = cmax[j-1] + processing_times[permutation[0]][j]
for i in range(1, m):
if j == 0:
cmax[j] += processing_times[permutation[i]][j]
else:
cmax[j] = max(cmax[j], cmax[j-1]) + processing_times[permutation[i]][j]
return cmax[-1]
def generate_initial_solution(n):
return list(range(n))
def swap(permutation, i, j):
permutation[i], permutation[j] = permutation[j], permutation[i]
def neighborhood_1(permutation):
neighborhood = []
for i in range(len(permutation)):
for j in range(i+1, len(permutation)):
neighbor = list(permutation)
swap(neighbor, i, j)
neighborhood.append(neighbor)
return neighborhood
def neighborhood_2(permutation):
neighborhood = []
for i in range(len(permutation)):
for j in range(i+2, len(permutation)):
neighbor = list(permutation)
neighbor[i+1:j+1] = reversed(neighbor[i+1:j+1])
neighborhood.append(neighbor)
return neighborhood
def variable_neighborhood_search(processing_times, max_iterations):
current_solution = generate_initial_solution(len(processing_times))
best_solution = list(current_solution)
for i in range(max_iterations):
neighborhood = neighborhood_1(current_solution) + neighborhood_2(current_solution)
random.shuffle(neighborhood)
for neighbor in neighborhood:
if calculate_cmax(neighbor, processing_times) < calculate_cmax(current_solution, processing_times):
current_solution = list(neighbor)
if calculate_cmax(current_solution, processing_times) < calculate_cmax(best_solution, processing_times):
best_solution = list(current_solution)
break
return best_solution
# Example usage
processing_times = [[2, 7, 3], [9, 2, 8], [6, 4, 5]]
solution = variable_neighborhood_search(processing_times, 1000)
print("Best solution:", solution)
print("Cmax:", calculate_cmax(solution, processing_times))
```
在此示例中,`processing_times` 是一个 $m \times n$ 的二维列表,其中 $m$ 是作业数,$n$ 是机器数,表示每个作业在每个机器上的加工时间。`variable_neighborhood_search` 函数接受 `processing_times` 和 `max_iterations` 两个参数,返回一个包含最佳解的置换。`calculate_cmax` 函数接受一个置换和 `processing_times`,返回在该置换下的最大完工时间 `Cmax`。`generate_initial_solution` 函数返回一个初始解,`swap` 函数交换置换中两个元素的位置,`neighborhood_1` 和 `neighborhood_2` 分别生成大小为 $n(n-1)/2$ 和 $n(n-3)/2$ 的两个邻域。最后,我们使用 `processing_times` 和 `solution` 调用 `calculate_cmax` 函数来计算最佳解的 `Cmax`。
阅读全文