图卷积网络进行骨骼识别代码_PyG训练图卷积网络GCN的代码参考
时间: 2024-04-29 08:21:24 浏览: 182
geo-gcn-master(2023.2.5,未).zip
以下是使用PyG训练图卷积网络GCN进行骨骼识别的代码参考:
```python
import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.datasets import ModelNet
from torch_geometric.loader import DataLoader
class GCN(torch.nn.Module):
def __init__(self):
super(GCN, self).__init__()
self.conv1 = GCNConv(3, 16)
self.conv2 = GCNConv(16, 32)
self.conv3 = GCNConv(32, 64)
self.fc1 = torch.nn.Linear(64, 128)
self.fc2 = torch.nn.Linear(128, 10)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = F.relu(self.conv2(x, edge_index))
x = F.relu(self.conv3(x, edge_index))
x = global_max_pool(x, batch)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GCN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
dataset = ModelNet(root='path/to/dataset', name='10')
loader = DataLoader(dataset, batch_size=32, shuffle=True)
def train():
model.train()
for data in loader:
data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.edge_index)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
def test(loader):
model.eval()
correct = 0
for data in loader:
data = data.to(device)
with torch.no_grad():
out = model(data.x, data.edge_index)
pred = out.argmax(dim=1)
correct += int((pred == data.y).sum())
return correct / len(loader.dataset)
for epoch in range(1, 201):
train()
train_acc = test(loader)
test_acc = test(loader)
print('Epoch: {:03d}, Train Acc: {:.4f}, Test Acc: {:.4f}'.format(
epoch, train_acc, test_acc))
```
在这个例子中,我们创建了一个包含三个GCNConv层的GCN模型来处理3D点云数据。然后我们使用PyG中的ModelNet数据集进行训练和测试,并使用Adam优化器进行优化。在每个epoch中,我们都会计算训练集和测试集的准确率,并打印出来。
需要注意的是,这里的global_max_pool函数是从torch_geometric.nn中导入的,用于进行全局最大池化操作。这个函数会对每个batch中的节点特征进行最大池化,得到一个大小为(batch_size, num_channels)的特征向量。
阅读全文