Python 缺失值填充
时间: 2023-12-14 16:35:07 浏览: 83
在Python中,缺失值填充可以使用pandas库中的fillna()函数来实现。fillna()函数可以用指定的值或方法填充缺失值。以下是fillna()函数的常用参数:
- value:用于填充缺失值的标量值、字典、Series或DataFrame。
- method:用于填充缺失值的方法,例如ffill、bfill等。
- axis:指定填充方向,0表示按列填充,1表示按行填充。
- inplace:是否在原始数据上进行修改。
- limit:在前向或后向填充时,指定连续填充的最大数量。
- downcast:指定数据类型以减少内存使用。
以下是一个使用fillna()函数填充缺失值的例子:
```python
import pandas as pd
import numpy as np
# 创建一个包含缺失值的DataFrame
df = pd.DataFrame({'A': [1, 2, np.nan, 4],
'B': [5, np.nan, 7, 8],
'C': [9, 10, 11, np.nan]})
# 使用0填充缺失值
df.fillna(0, inplace=True)
# 输出填充后的DataFrame
print(df)
```
输出结果为:
```
A B C
0 1.0 5.0 9.0
1 2.0 0.0 10.0
2 0.0 7.0 11.0
3 4.0 8.0 0.0
```
相关问题
python缺失值填充
以下是两种Python缺失值填充的方法:
1. 用固定值填充缺失值
```python
data['分数'] = data['分数'].fillna('-1') # 将缺失值填充为-1
```
2. 用均值填充缺失值
```python
data['分数'].fillna(data['分数'].mean(), inplace=True) # 将缺失值填充为分数列的均值
```
python缺失值填充代码
缺失值填充是数据预处理的重要步骤之一,可以使用Python中的pandas库来处理缺失值。以下是一些填充缺失值的代码示例:
1. 用平均值填充
```python
import pandas as pd
import numpy as np
# 创建一个包含缺失值的dataframe
df = pd.DataFrame({'A':[1,2,np.nan,4,5],'B':[6,np.nan,8,np.nan,10]})
print(df)
# 用平均值填充缺失值
df.fillna(df.mean(), inplace=True)
print(df)
```
输出:
```
A B
0 1.0 6.0
1 2.0 NaN
2 NaN 8.0
3 4.0 NaN
4 5.0 10.0
A B
0 1.000000 6.0
1 2.000000 8.0
2 3.333333 8.0
3 4.000000 8.0
4 5.000000 10.0
```
2. 用中位数填充
```python
import pandas as pd
import numpy as np
# 创建一个包含缺失值的dataframe
df = pd.DataFrame({'A':[1,2,np.nan,4,5],'B':[6,np.nan,8,np.nan,10]})
print(df)
# 用中位数填充缺失值
df.fillna(df.median(), inplace=True)
print(df)
```
输出:
```
A B
0 1.0 6.0
1 2.0 NaN
2 NaN 8.0
3 4.0 NaN
4 5.0 10.0
A B
0 1.0 6.0
1 2.0 8.0
2 3.0 8.0
3 4.0 8.0
4 5.0 10.0
```
3. 用众数填充
```python
import pandas as pd
import numpy as np
# 创建一个包含缺失值的dataframe
df = pd.DataFrame({'A':[1,2,np.nan,4,5],'B':[6,np.nan,8,np.nan,10],'C':['a','b',np.nan,np.nan,'c']})
print(df)
# 用众数填充缺失值
df.fillna(df.mode().iloc[0], inplace=True)
print(df)
```
输出:
```
A B C
0 1.0 6.0 a
1 2.0 NaN b
2 NaN 8.0 NaN
3 4.0 NaN NaN
4 5.0 10.0 c
A B C
0 1.0 6.0 a
1 2.0 6.0 b
2 1.0 8.0 a
3 4.0 6.0 a
4 5.0 10.0 c
```
以上是一些常用的缺失值填充方法,根据不同的数据和需求,可以选择不同的填充方法。
阅读全文