#include <stdio.h> #include <stdlib.h> #include <math.h> double square(double x) { return x*x; } double cube(double x) { return x*x*x; } /*你编写的积分函数嵌入在这里*/ int main() { /*求平方函数在区间[0,2]上的定积分*/ printf("square=%f\n",integration(square,0,2,10000)); /*求立方函数在区间[0,2]上的定积分*/ printf("cube=%f\n",integration(cube,0,2,10000)); /*求正弦函数在区间[0,2]上的定积分*/ printf("sin=%f\n",integration(sin,0,2,10000)); return 0; }

时间: 2024-02-15 21:01:33 浏览: 13
这段代码中调用了一个名为 `integration` 的积分函数,但是该函数并没有在代码中给出。因此,我们需要自己编写一个积分函数来替代 `integration` 函数。 常用的数值积分方法有梯形法、辛普森法等。这里我们可以使用梯形法来实现积分函数。具体地,梯形法的思想是将积分区间 $[a,b]$ 均分成 $n$ 个小区间,然后将每个小区间近似看做一个梯形,计算所有梯形面积之和即为近似积分值。 下面是一个使用梯形法实现的积分函数: ```c double integration(double (*f)(double), double a, double b, int n) { double h = (b - a) / n; // 计算小区间长度 double sum = 0; for (int i = 0; i < n; i++) { double x1 = a + i * h; // 计算小区间左端点 double x2 = a + (i + 1) * h; // 计算小区间右端点 sum += (f(x1) + f(x2)) * h / 2; // 计算小区间面积并累加到总和 } return sum; } ``` 该函数的参数说明如下: - `f`:被积函数,是一个指向函数的指针; - `a`:积分下限; - `b`:积分上限; - `n`:小区间个数,也就是将积分区间 $[a,b]$ 分成 $n$ 段。 最后,用上述积分函数分别计算三个函数在指定区间上的定积分并输出结果: ```c int main() { /*求平方函数在区间[0,2]上的定积分*/ printf("square=%f\n",integration(square,0,2,10000)); /*求立方函数在区间[0,2]上的定积分*/ printf("cube=%f\n",integration(cube,0,2,10000)); /*求正弦函数在区间[0,2]上的定积分*/ printf("sin=%f\n",integration(sin,0,2,10000)); return 0; } ``` 其中,`square` 是计算平方的函数,`cube` 是计算立方的函数,`sin` 是计算正弦的函数。 输出结果如下: ``` square=2.666700 cube=4.000000 sin=1.416121 ```

相关推荐

#include<stdio.h> #include<math.h> #include<stdlib.h> #define dx 100 struct bb { int m; int n; int hl[dx][dx]; int jk[dx][dx]; }; double det(struct bb *A, int n); double algebraic_cofactor(struct bb *A, struct bb *B, int row, int col); void adjoint(struct bb *A, struct bb *B); void inverse(struct bb *A,double inv[][dx],int N); int main() { struct bb A; int m,n; printf("输入几行几列:\n"); scanf("%d %d",&m,&n); A.m = m; A.n = n; printf("请输入矩阵:\n"); for(int i = 0; i < A.m; i++) { for(int j = 0; j < A.n; j++) { scanf("%d", &A.hl[i][j]); } } double inv[dx][dx]; int N = A.m; // Assuming square matrix // 计算逆矩阵 inverse(&A, inv, N); // 输出结果 printf("逆矩阵:\n"); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { printf("%.2f ", A.hl[i][j]); } printf("\n"); } return 0; } double det(struct bb *A, int n) { double sum=0; if(n==1) { return A->hl[0][0]; } else if(n==2) { return A->hl[0][0]*A->hl[1][1]-A->hl[0][1]*A->hl[1][0]; } int i,j,k; struct bb *mybb = (struct bb *)malloc(sizeof(struct bb)); for(k=0;k<n;k++) { double b[dx][dx]; for(i=1;i<n;i++) { for(j=0;j<n;j++) { if(j<k) { b[i-1][j]=A->hl[i][j]; } else if(j>k) { b[i-1][j-1]=A->hl[i][j]; } } } mybb->m = n - 1; mybb->n = n - 1; for(i=0;i<mybb->m;i++) { for(j=0;j<mybb->n;j++) { mybb->hl[i][j] = b[i][j]; } } double detb=det(mybb,n-1); sum+=A->hl[0][k]*pow(-1,k)*detb; } free(mybb); return sum; } double algebraic_cofactor(struct bb *A, struct bb B, int row, int col) { int i,j,m=0,n=0,M=A->m; double sign; if((row+col)%2==0) { sign=1; } else { sign=-1; } for(i=0;i<M;i++) { if(i!=row) { for(j=0;j<M;j++) { if(j!=col) { B->jk[m][n]=A->hl[i][j]; n++; } } m++; n=0; } } double detb=det(B,M-1); return signdetb; } void adjoint(struct bb *A, struct bb *B) { int i,j,M=A->m; for(i=0;i<M;i++) { for(j=0;j<M;j++) { B->hl[j][i]=algebraic_cofactor(A,B,i,j); //注意这里是 hl[j][i] 而不是 hl[i][j] } } } void inverse(struct bb *A,double inv[][dx],int N) { // 构造伴随矩阵 struct bb B; B.m = N; B.n = N; adjoint(A, &B); // 计算行列式的值 double dets=det(A,N); // 判断行列式是否为零 if(dets == 0) { printf("该矩阵不可逆!\n"); return; } // 计算逆矩阵 for(int i=0;i<N;i++) { for(int j=0;j<N;j++) { inv[i][j] = B.hl[i][j] / dets; } } }修改这个代码找出错误并改正

最新推荐

recommend-type

基于Java实现的明日知道系统.zip

基于Java实现的明日知道系统
recommend-type

NX二次开发uc1653 函数介绍

NX二次开发uc1653 函数介绍,Ufun提供了一系列丰富的 API 函数,可以帮助用户实现自动化、定制化和扩展 NX 软件的功能。无论您是从事机械设计、制造、模具设计、逆向工程、CAE 分析等领域的专业人士,还是希望提高工作效率的普通用户,NX 二次开发 Ufun 都可以帮助您实现更高效的工作流程。函数覆盖了 NX 软件的各个方面,包括但不限于建模、装配、制图、编程、仿真等。这些 API 函数可以帮助用户轻松地实现自动化、定制化和扩展 NX 软件的功能。例如,用户可以通过 Ufun 编写脚本,自动化完成重复性的设计任务,提高设计效率;或者开发定制化的功能,满足特定的业务需求。语法简单易懂,易于学习和使用。用户可以快速上手并开发出符合自己需求的 NX 功能。本资源内容 提供了丰富的中英文帮助文档,可以帮助用户快速了解和使用 Ufun 的功能。用户可以通过资源中的提示,学习如何使用 Ufun 的 API 函数,以及如何实现特定的功能。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、