kmeans.fit(data_for_kmeans)需要引什么包么
时间: 2024-05-13 15:15:08 浏览: 86
是的,需要引入`sklearn.cluster`包,具体代码如下:
```python
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=k) # k为聚类的数目
kmeans.fit(data_for_kmeans)
```
相关问题
from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=5,n_jobs=-1,random_state=1234) # 模型训练 kmeans_fit = kmeans.fit(data_scale) # 聚类中心 kmeans_cluster = kmeans_fit.cluster_centers_ print('聚类中心为\n',kmeans_fit.cluster_centers_) # 聚类后样本的类别标签 kmeans_label = kmeans_fit.labels_ print('聚类后样本标签为\n',kmeans_fit.labels_) # 聚类后各个类别数目 r1 = pd.Series(kmeans_label).value_counts() print('聚类后各个类别数目\n',r1) # 输出聚类分群结果 cluster_center = pd.DataFrame(kmeans_cluster,columns=['ZL','ZR','ZF','ZM','ZC']) cluster_center.index = pd.DataFrame(kmeans_label).drop_duplicates().iloc[:,0] cluster = pd.concat([r1,cluster_center],axis=1) # 修改第一列列名 list_column = list(cluster.columns) list_column[0] = '类别数目' cluster.columns = list_column 将上述代码转换为matlab语言
把Python代码转换为MATLAB代码可以参考以下示例:
```matlab
% 导入sklearn库中的KMeans类
addpath('sklearn.cluster')
from sklearn.cluster import KMeans
% 构造KMeans对象
kmeans = KMeans('n_clusters',5,'n_jobs',-1,'random_state',1234);
% 训练模型
kmeans_fit = kmeans.fit(data_scale);
% 获取聚类中心
kmeans_cluster = kmeans_fit.cluster_centers_;
disp('聚类中心为:');
disp(kmeans_fit.cluster_centers_);
% 获取样本的类别标签
kmeans_label = kmeans_fit.labels_;
disp('聚类后样本标签为:');
disp(kmeans_fit.labels_);
% 获取各个类别数目
r1 = tabulate(kmeans_label);
disp('聚类后各个类别数目:');
disp(r1);
% 输出聚类分群结果
cluster_center = array2table(kmeans_cluster,'VariableNames',{'ZL','ZR','ZF','ZM','ZC'});
cluster_center.Properties.RowNames = cellstr(num2str(unique(kmeans_label)));
cluster = [array2table(r1(:,2),'VariableNames',{'类别数目'}), cluster_center];
cluster.Properties.VariableNames{1} = '类别数目';
disp(cluster);
```
需要注意的是,MATLAB中没有直接对应Python中的pandas库,因此需要使用MATLAB自带的数据类型,如table和cell等。另外,Python中的value_counts()方法在MATLAB中可以使用tabulate()函数实现。
import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans from scipy.spatial import Voronoi, voronoi_plot_2d # 生成示例数据 data = df.iloc[:,1:15] # 标准化处理 scaler = StandardScaler() data_scaled = scaler.fit_transform(data) # 主成分分析 pca = PCA(n_components=5) data_pca = pca.fit_transform(data_scaled) # 聚类分析 kmeans = KMeans(n_clusters=3) kmeans.fit(data_pca) labels = kmeans.labels_ centers = kmeans.cluster_centers_ # 绘制Voronoi图 vor = Voronoi(centers) voronoi_plot_2d(vor) # 绘制样本点 plt.scatter(data_pca[:, 0], data_pca[:, 1], c=labels) # 设置坐标轴标签和标题 plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Voronoi Diagram') # 显示图形 plt.show()
您的代码看起来几乎是正确的,但有一点需要注意。Voronoi图是在原始数据空间中绘制的,而不是在主成分空间中。因此,在绘制Voronoi图之前,我们需要将主成分投影回原始数据空间。以下是修改后的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from scipy.spatial import Voronoi, voronoi_plot_2d
# 生成示例数据
data = df.iloc[:, 1:15]
# 标准化处理
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)
# 主成分分析
pca = PCA(n_components=5)
data_pca = pca.fit_transform(data_scaled)
# 聚类分析
kmeans = KMeans(n_clusters=3)
kmeans.fit(data_pca)
labels = kmeans.labels_
centers = kmeans.cluster_centers_
# 将主成分投影回原始数据空间
data_projected = pca.inverse_transform(data_pca)
# 绘制Voronoi图
vor = Voronoi(centers)
voronoi_plot_2d(vor)
# 绘制样本点
plt.scatter(data_projected[:, 0], data_projected[:, 1], c=labels)
# 设置坐标轴标签和标题
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Voronoi Diagram')
# 显示图形
plt.show()
```
请确保在代码中替换`df.iloc[:, 1:15]`为您实际的数据。这段代码将绘制投影回原始数据空间后的样本点,并在Voronoi图上显示聚类结果。
阅读全文