labels = kmeans.fit_predict(data)
时间: 2023-06-09 10:06:44 浏览: 202
这段代码是用于执行 K-Means 聚类算法,对数据集进行分类,并返回每个数据点所属的簇(cluster)。其中,data 是输入的数据集,kmeans 是一个 KMeans 类型的对象,labels 是用于存储分类结果的数组。函数 fit_predict() 在 K-Means 算法中既能训练模型,又能对数据进行预测。通过该函数,我们可以获得每个数据点所属的簇标签,以便进行后续的数据分析和处理。
相关问题
ValueError Traceback (most recent call last) Cell In[39], line 3 1 from sklearn.cluster import KMeans 2 model_kmean = KMeans(n_clusters=3) ----> 3 cluster_labels_1= model_kmean.fit_predict(df1) 4 cluster_labels1=pd.DataFrame(cluster_labels_1, columns=['clusters']) 5 merge_data1=pd.concat([a, pd.Series(cluster_labels_1, index=df1.index)], axis=1) File ~\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1033, in _BaseKMeans.fit_predict(self, X, y, sample_weight) 1010 def fit_predict(self, X, y=None, sample_weight=None): 1011 """Compute cluster centers and predict cluster index for each sample. 1012 1013 Convenience method; equivalent to calling fit(X) followed by (...) 1031 Index of the cluster each sample belongs to. 1032 """ -> 1033 return self.fit(X, sample_weight=sample_weight).labels_
这段代码出现了一个 ValueError,可能是由于数据类型不匹配或参数设置错误导致的。建议检查一下 df1 的数据类型和值是否符合 KMeans 模型的要求。另外,也可以尝试调整一下 n_clusters 参数的值看看是否能够解决问题。
from sklearn.datasets import load_iris data,target=load_iris(return_X_y=True) print('feature_value:',data.shape) print('target:',target) from sklearn.cluster import KMeans import numpy as np for i in range(0,30): kmeans=KMeans(n_clusters=3,max_iter=30,tol=0.0001, random_state=i).fit(data) label=kmeans.labels_ #print('label:',label) center=kmeans.cluster_centers_ #print('center:',center) predict=kmeans.predict(data) print('i=',i) print('predict:',predict) accuracy=np.mean(predict==target)*100 print('accuracy',accuracy) #模型预测 predict=kmeans.predict(data) print('predict:',predict) import numpy as np accurancy=np.mean(predict==target)*100 print('i=',i) print('accurancy',accurancy) import matplotlib.pyplot as plt import mglearn plt.figure(figsize=(10,8)) plt.subplot(221) mglearn.discrete_scatter(data[:,0],data[:,1],target,markers='^') plt.xlabel('data') plt.ylabel('origin') plt.subplot(222) mglearn.discrete_scatter(data[:,0],data[:,1],y_predict,markers='^') mglearn.discrete_scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],[0,1,2],markers='o',markeredgewidth=2) plt.xlabel('data') plt.ylabel('y_predict') plt.show()写一下注释
代码功能:使用KMeans算法对鸢尾花数据集进行聚类,并绘制聚类结果的散点图。
1. 导入所需的库和数据集:
```python
from sklearn.datasets import load_iris
data,target=load_iris(return_X_y=True)
```
2. 输出特征值和目标值的形状:
```python
print('feature_value:',data.shape)
print('target:',target)
```
3. 导入KMeans算法,对数据进行聚类:
```python
from sklearn.cluster import KMeans
for i in range(0,30):
kmeans=KMeans(n_clusters=3,max_iter=30,tol=0.0001, random_state=i).fit(data)
label=kmeans.labels_ #print('label:',label)
center=kmeans.cluster_centers_ #print('center:',center)
predict=kmeans.predict(data)
print('i=',i)
print('predict:',predict)
accuracy=np.mean(predict==target)*100
print('accuracy',accuracy)
```
4. 输出聚类的预测结果,并计算准确率:
```python
predict=kmeans.predict(data)
print('predict:',predict)
import numpy as np
accurancy=np.mean(predict==target)*100
print('i=',i)
print('accurancy',accurancy)
```
5. 绘制散点图:
```python
import matplotlib.pyplot as plt
import mglearn
plt.figure(figsize=(10,8))
plt.subplot(221)
mglearn.discrete_scatter(data[:,0],data[:,1],target,markers='^')
plt.xlabel('data')
plt.ylabel('origin')
plt.subplot(222)
mglearn.discrete_scatter(data[:,0],data[:,1],y_predict,markers='^')
mglearn.discrete_scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],[0,1,2],markers='o',markeredgewidth=2)
plt.xlabel('data')
plt.ylabel('y_predict')
plt.show()
```
其中,第一个子图是原始数据的散点图,第二个子图是聚类结果的散点图,红色、黄色和紫色分别代表三个不同的簇。
阅读全文