double factwlb(int n) { if(n == 0) { return 1; } else { return n * factwlb(n-1); }什么意思

时间: 2024-05-25 15:14:18 浏览: 24
这是一个递归函数,用于计算一个整数的阶乘。 当输入的整数为0时,函数返回1。否则,函数会调用自身,传递n-1作为参数,并将n乘以递归结果返回。这样就可以计算出n的阶乘。 例如,当输入n=4时,函数会先计算4 * factwlb(3),然后再计算3 * factwlb(2),接着是2 * factwlb(1),最后是1 * factwlb(0),因为factwlb(0)返回1。所以,factwlb(4)的返回值为4 * 3 * 2 * 1 = 24。
相关问题

double funP(int n, double x) { double p0 = 1; double p1 = x; double pn; if (n == 0) { return p0; } else if (n == 1) { return p1; } else { for (int i = 2; i <= n; i++) { pn = ((2 * i - 1) * p1 - (i - 1) * p0) / i; p0 = p1; p1 = pn; } return pn; } }

这是一个计算连带勒让德多项式的函数funP,输入参数n表示连带勒让德多项式的阶数,x表示自变量,输出值为该多项式在自变量x处的值。 连带勒让德多项式是物理学中常用的特殊函数,它们在球形坐标系下的分离变量和球形调和函数中具有重要作用。其表达式为: $$ P_n^m(x) = (-1)^m(1-x^2)^{\frac{m}{2}}\frac{d^m}{dx^m}P_n(x) $$ 其中,$P_n(x)$是勒让德多项式,$m$是连带勒让德多项式的次数。 这个函数的实现采用了连带勒让德多项式的递推公式,该公式的表达式为: $$ P_n(x) = \frac{(2n-1)xP_{n-1}(x)-(n-1)P_{n-2}(x)}{n} $$ 通过这个递推公式,可以在O(n)的时间复杂度内计算出任意阶数的连带勒让德多项式在任意自变量x处的值。

将下面这段代码翻译成python语言#include<stdio.h> #include<math.h> int pailie(int a,int b) { int ans=1; for(int i=a;i>(a-b);i--) { ans*=i; } return ans; } int function(int m,int n){ if(m==n) { return 1; } int k,t,M=1,N=1,T=1; t=m-n; while(t!=1){ T=T*t; t=t-1; } while(m!=1){ M=M*m; m=m-1; } while(n!=1){ N=N*n; n=n-1; } k=M/(N*T); return k; } int fact(int N) { int ans=1; if(N==0){ } else{ for(int i=1;i<=N;i++) { ans*=i; } } return ans; } int DP(int a,int b) { int ans; return ans=fact(a)/fact(a-b); } int main() { int N,n; scanf("%d",&N); //a不唯一 for(int n=2;n<=N;n++){ int P[n]={0},F[n],sum1=0; double m[n]={0}; for(int i=0;i<n;i++) { F[i]=0; P[i]=DP(n,i+1); for(int k=0;k<=i+1;k++) { F[i]+=DP(i+1,k); } sum1+=P[i]*(F[i]-1); } for(int i=0;i<n;i++) { m[i]=(double)(F[i]-1)/(double)sum1; //printf("%lf\n",m[i]); } int cnt[n]={0},po[n]={0},sum=0; double fenzisum=0,fenmusum=0,tmp=0; for(int i=0;i<n;i++) { cnt[i]=pailie(n,i+1); //printf("%d %d %d\n",n,i+1,cnt[i]); } for(int i=0;i<n;i++) { po[i]=pow(2,(i+1))-1; sum+=cnt[i]*po[i]; } for(int i=0;i<n;i++) { m[i]=(double)po[i]/sum; fenzisum+=m[i]*log2(m[i]/po[i])*cnt[i]; fenmusum+=pow(po[i],m[i])*cnt[i]; //printf("%lf\n",m[i]); } double ans=fenzisum/log2(fenmusum); printf("A=1 N=%d\n",n); printf("%lf\n",-ans);} }

以下是将此代码翻译为Python语言后的代码: ```python import math def pailie(a, b): ans = 1 for i in range(a, a-b, -1): ans *= i return ans def function(m, n): if m == n: return 1 k, t, M, N, T = 1, 1, 1, 1, 1 t = m - n while t != 1: T *= t t -= 1 while m != 1: M *= m m -= 1 while n != 1: N *= n n -= 1 k = M // (N * T) return k def fact(N): ans = 1 if N == 0: pass else: for i in range(1, N+1): ans *= i return ans def DP(a, b): return fact(a) // fact(a-b) N = int(input()) for n in range(2, N+1): P, F, sum1, m, cnt, po, sum, fenzisum, fenmusum = [0]*n, [0]*n, 0, [0]*n, [0]*n, [0]*n, 0, 0, 0 for i in range(n): P[i] = DP(n, i+1) for k in range(i+2): F[i] += DP(i+1, k) sum1 += P[i] * (F[i]-1) for i in range(n): m[i] = (F[i]-1) / sum1 for i in range(n): cnt[i] = pailie(n, i+1) for i in range(n): po[i] = pow(2, i+1) - 1 sum += cnt[i] * po[i] for i in range(n): m[i] = po[i] / sum fenzisum += m[i] * math.log2(m[i] / po[i]) * cnt[i] fenmusum += pow(po[i], m[i]) * cnt[i] ans = -fenzisum / math.log2(fenmusum) print("A=1 N={}".format(n)) print(ans) ```
阅读全文

相关推荐

类体系设计#include<iostream> #include<fstream> #include<iomanip> using namespace std; double M[3][3]; double N[10][10]; bool ReadMatrix() { int i, j; ifstream Nfile("d:\\N矩阵.txt"); if (!Nfile) return false; ifstream Mfile("d:\\M矩阵.txt"); if (!Mfile) { Nfile.close(); return false; } for (i = 0;i < 10;i++) for (j = 0;j < 10;j++) Nfile >> N[i][j]; for (i = 0;i < 3;i++) for (j = 0;j < 3;j++) Mfile >> M[i][j]; Mfile.close(); Nfile.close(); return true; } double algorithms1(int I, int J) { double Mij, Nij; double a, b; int i, j, in, jn; a = 0; b = 0; for (i = 0;i <= 2;i++) for (j = 0;j <= 2;j++) { Mij = M[i][j]; in = I - i - 1; jn = J - j - 1; if (in < 0 || jn < 0 || in>9 || jn>9) Nij = 0; else Nij = N[in][jn]; a = a + Mij * Nij; b = b + Mij; } if (b != 0) return a / b; else return 0; } double algorithms2(int I, int J) { double Mij, Nij; double a, b; int i, j, in, jn; a = 0; b = 0; for (i = 0;i <= 2;i++) for (j = 0;j <= 2;j++) { Mij = M[i][j]; in = I - i - 1; jn = J - j - 1; if (in < 0 || jn < 0 || in>9 || jn>9) Nij = 0; else Nij = N[9 - in][9 - jn]; a = a + Mij * Nij; b = b + Mij; } if (b != 0) return a / b; else return 0; } int main() { int i, j; double v1, v2; char c; if (!ReadMatrix()) { cout << "打开文件出错,程序退出" << endl; return -1; } cout << "读入矩阵数据成功,请输入I:"; cin >> i; cout << endl << "请输入J:"; cin >> j; cout << "输入的I=" << i << "输入的J= " << j << endl; v1 = algorithms1(i, j); cout << "算法1的结果=" << v1 << endl; v2 = algorithms2(i, j); cout << "算法2的结果=" << v2 << endl; return 0; }

类定义(包括数据成员和成员函数功能描述)#include<iostream> #include<fstream> #include<iomanip> using namespace std; double M[3][3]; double N[10][10]; bool ReadMatrix() { int i, j; ifstream Nfile("d:\N矩阵.txt"); if (!Nfile) return false; ifstream Mfile("d:\M矩阵.txt"); if (!Mfile) { Nfile.close(); return false; } for (i = 0;i < 10;i++) for (j = 0;j < 10;j++) Nfile >> N[i][j]; for (i = 0;i < 3;i++) for (j = 0;j < 3;j++) Mfile >> M[i][j]; Mfile.close(); Nfile.close(); return true; } double algorithms1(int I, int J) { double Mij, Nij; double a, b; int i, j, in, jn; a = 0; b = 0; for (i = 0;i <= 2;i++) for (j = 0;j <= 2;j++) { Mij = M[i][j]; in = I - i - 1; jn = J - j - 1; if (in < 0 || jn < 0 || in>9 || jn>9) Nij = 0; else Nij = N[in][jn]; a = a + Mij * Nij; b = b + Mij; } if (b != 0) return a / b; else return 0; } double algorithms2(int I, int J) { double Mij, Nij; double a, b; int i, j, in, jn; a = 0; b = 0; for (i = 0;i <= 2;i++) for (j = 0;j <= 2;j++) { Mij = M[i][j]; in = I - i - 1; jn = J - j - 1; if (in < 0 || jn < 0 || in>9 || jn>9) Nij = 0; else Nij = N[9 - in][9 - jn]; a = a + Mij * Nij; b = b + Mij; } if (b != 0) return a / b; else return 0; } int main() { int i, j; double v1, v2; char c; if (!ReadMatrix()) { cout << "打开文件出错,程序退出" << endl; return -1; } cout << "读入矩阵数据成功,请输入I:"; cin >> i; cout << endl << "请输入J:"; cin >> j; cout << "输入的I=" << i << "输入的J= " << j << endl; v1 = algorithms1(i, j); cout << "算法1的结果=" << v1 << endl; v2 = algorithms2(i, j); cout << "算法2的结果=" << v2 << endl; return 0; }

最新推荐

recommend-type

Java实现求解一元n次多项式的方法示例

Java 实现求解一元 n 次多项式的方法示例 Java 实现求解一元 n 次多项式是 Java 编程中的一种常见操作,涉及到矩阵运算和高斯消元法等技术。本文将详细介绍 Java 实现求解一元 n 次多项式的方法,并提供相应的代码...
recommend-type

安全技术与管理_.docx

安全技术与管理_
recommend-type

R语言中workflows包的建模工作流程解析

资源摘要信息:"工作流程建模是将预处理、建模和后处理请求结合在一起的过程,从而优化数据科学的工作流程。工作流程可以将多个步骤整合为一个单一的对象,简化数据处理流程,提高工作效率和可维护性。在本资源中,我们将深入探讨工作流程的概念、优点、安装方法以及如何在R语言环境中使用工作流程进行数据分析和模型建立的例子。 首先,工作流程是数据处理的一个高级抽象,它将数据预处理(例如标准化、转换等),模型建立(例如使用特定的算法拟合数据),以及后处理(如调整预测概率)等多个步骤整合起来。使用工作流程,用户可以避免对每个步骤单独跟踪和管理,而是将这些步骤封装在一个工作流程对象中,从而简化了代码的复杂性,增强了代码的可读性和可重用性。 工作流程的优势主要体现在以下几个方面: 1. 管理简化:用户不需要单独跟踪和管理每个步骤的对象,只需要关注工作流程对象。 2. 效率提升:通过单次fit()调用,可以执行预处理、建模和模型拟合等多个步骤,提高了操作的效率。 3. 界面简化:对于具有自定义调整参数设置的复杂模型,工作流程提供了更简单的界面进行参数定义和调整。 4. 扩展性:未来的工作流程将支持添加后处理操作,如修改分类模型的概率阈值,提供更全面的数据处理能力。 为了在R语言中使用工作流程,可以通过CRAN安装工作流包,使用以下命令: ```R install.packages("workflows") ``` 如果需要安装开发版本,可以使用以下命令: ```R # install.packages("devtools") devtools::install_github("tidymodels/workflows") ``` 通过这些命令,用户可以将工作流程包引入到R的开发环境中,利用工作流程包提供的功能进行数据分析和建模。 在数据建模的例子中,假设我们正在分析汽车数据。我们可以创建一个工作流程,将数据预处理的步骤(如变量选择、标准化等)、模型拟合的步骤(如使用特定的机器学习算法)和后处理的步骤(如调整预测阈值)整合到一起。通过工作流程,我们可以轻松地进行整个建模过程,而不需要编写繁琐的代码来处理每个单独的步骤。 在R语言的tidymodels生态系统中,工作流程是构建高效、可维护和可重复的数据建模工作流程的重要工具。通过集成工作流程,R语言用户可以在一个统一的框架内完成复杂的建模任务,充分利用R语言在统计分析和机器学习领域的强大功能。 总结来说,工作流程的概念和实践可以大幅提高数据科学家的工作效率,使他们能够更加专注于模型的设计和结果的解释,而不是繁琐的代码管理。随着数据科学领域的发展,工作流程的工具和方法将会变得越来越重要,为数据处理和模型建立提供更加高效和规范的解决方案。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【工程技术中的数值分析秘籍】:数学问题的终极解决方案

![【工程技术中的数值分析秘籍】:数学问题的终极解决方案](https://media.geeksforgeeks.org/wp-content/uploads/20240429163511/Applications-of-Numerical-Analysis.webp) 参考资源链接:[东南大学_孙志忠_《数值分析》全部答案](https://wenku.csdn.net/doc/64853187619bb054bf3c6ce6?spm=1055.2635.3001.10343) # 1. 数值分析的数学基础 在探索科学和工程问题的计算机解决方案时,数值分析为理解和实施这些解决方案提供了
recommend-type

如何在数控车床仿真系统中正确进行机床回零操作?请结合手工编程和仿真软件操作进行详细说明。

机床回零是数控车床操作中的基础环节,特别是在仿真系统中,它确保了机床坐标系的正确设置,为后续的加工工序打下基础。在《数控车床仿真实验:操作与编程指南》中,你可以找到关于如何在仿真环境中进行机床回零操作的详尽指导。具体操作步骤如下: 参考资源链接:[数控车床仿真实验:操作与编程指南](https://wenku.csdn.net/doc/3f4vsqi6eq?spm=1055.2569.3001.10343) 首先,确保数控系统已经启动,并处于可以进行操作的状态。然后,打开机床初始化界面,解除机床锁定。在机床控制面板上选择回零操作,这通常涉及选择相应的操作模式或输入特定的G代码,例如G28或
recommend-type

Vue统计工具项目配置与开发指南

资源摘要信息:"该项目标题为'bachelor-thesis-stat-tool',是一个涉及统计工具开发的项目,使用Vue框架进行开发。从描述中我们可以得知,该项目具备完整的前端开发工作流程,包括项目设置、编译热重装、生产编译最小化以及代码质量检查等环节。具体的知识点包括: 1. Vue框架:Vue是一个流行的JavaScript框架,用于构建用户界面和单页应用程序。它采用数据驱动的视图层,并能够以组件的形式构建复杂界面。Vue的核心库只关注视图层,易于上手,并且可以通过Vue生态系统中的其他库和工具来扩展应用。 2. yarn包管理器:yarn是一个JavaScript包管理工具,类似于npm。它能够下载并安装项目依赖,运行项目的脚本命令。yarn的特色在于它通过一个锁文件(yarn.lock)来管理依赖版本,确保项目中所有人的依赖版本一致,提高项目的可预测性和稳定性。 3. 项目设置与开发流程: - yarn install:这是一个yarn命令,用于安装项目的所有依赖,这些依赖定义在package.json文件中。执行这个命令后,yarn会自动下载并安装项目所需的所有包,以确保项目环境配置正确。 - yarn serve:这个命令用于启动一个开发服务器,使得开发者可以在本地环境中编译并实时重载应用程序。在开发模式下,这个命令通常包括热重载(hot-reload)功能,意味着当源代码发生变化时,页面会自动刷新以反映最新的改动,这极大地提高了开发效率。 4. 生产编译与代码最小化: - yarn build:这个命令用于构建生产环境所需的代码。它通常包括一系列的优化措施,比如代码分割、压缩和打包,目的是减少应用程序的体积和加载时间,提高应用的运行效率。 5. 代码质量检查与格式化: - yarn lint:这个命令用于运行项目中的lint工具,它是用来检查源代码中可能存在的语法错误、编码风格问题、代码重复以及代码复杂度等问题。通过配置适当的lint规则,可以统一项目中的代码风格,提高代码的可读性和可维护性。 6. 自定义配置: - 描述中提到'请参阅',虽然没有具体信息,但通常意味着项目中会有自定义的配置文件或文档,供开发者参考,如ESLint配置文件(.eslintrc.json)、webpack配置文件等。这些文件中定义了项目的个性化设置,包括开发服务器设置、代码转译规则、插件配置等。 综上所述,这个项目集成了前端开发的常用工具和流程,展示了如何使用Vue框架结合yarn包管理器和多种开发工具来构建一个高效的项目。开发者需要熟悉这些工具和流程,才能有效地开发和维护项目。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

74LS181逻辑电路设计:原理图到实际应用的速成课

参考资源链接:[4位运算功能验证:74LS181 ALU与逻辑运算实验详解](https://wenku.csdn.net/doc/2dn8i4v6g4?spm=1055.2635.3001.10343) # 1. 74LS181逻辑电路概述 ## 1.1 74LS181的定义与重要性 74LS181是一款广泛应用于数字逻辑设计的4位算术逻辑单元(ALU),它提供了一系列算术和逻辑运算功能,使得复杂的计算任务得以简化实现。该器件由16个引脚组成,是早期数字系统设计的核心组件之一。 ## 1.2 74LS181的应用背景 74LS181出现在计算机和数字电路设计的黄金时期,它支持多种二进制运
recommend-type

在集成电路测试中,如何根据JEDEC标准正确应用K因子校准方法来测量热阻?

对于从事半导体器件测试的工程师来说,掌握基于JEDEC标准的热阻测量方法是至关重要的。在这些方法中,K因子校准是确保热阻测量精度的关键步骤。为了帮助你深入理解并正确应用K因子校准方法,我们建议参考《JEDEC JESD51-1:集成电路热特性与电学测试》。这份文档详细介绍了如何进行K因子校准以及相关的测试流程。 参考资源链接:[JEDEC JESD51-1:集成电路热特性与电学测试](https://wenku.csdn.net/doc/3rddttq31q?spm=1055.2569.3001.10343) K因子校准方法涉及以下几个关键步骤: