python写Transfomer训练代码
时间: 2023-03-14 09:29:49 浏览: 125
我可以提供关于如何使用Python来写Transfomer训练代码的一些建议。首先,您需要了解Transfomer的基本概念,然后熟悉Python语言,最后根据您的需求编写Transfomer训练代码。
相关问题
请写一个Transformer训练代码
好的,请参考以下代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from transformer import Transformer
from dataset import MyDataset
# 定义超参数
batch_size = 64
embedding_size = 256
hidden_size = 512
num_layers = 6
num_heads = 8
dropout = 0.1
learning_rate = 0.001
num_epochs = 100
# 加载数据集
dataset = MyDataset()
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 初始化模型和优化器
model = Transformer(dataset.vocab_size, embedding_size, hidden_size, num_layers, num_heads, dropout)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 训练
for epoch in range(num_epochs):
total_loss = 0
for i, (inputs, targets) in enumerate(dataloader):
# 清空梯度
optimizer.zero_grad()
# 前向传播
outputs = model(inputs, targets[:, :-1])
# 计算损失
loss = criterion(outputs.reshape(-1, dataset.vocab_size), targets[:, 1:].reshape(-1))
# 反向传播
loss.backward()
# 更新参数
optimizer.step()
# 累加损失
total_loss += loss.item()
# 打印训练信息
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(dataset)//batch_size, total_loss/(i+1)))
# 保存模型
torch.save(model.state_dict(), 'transformer.pth')
```
这里使用了一个自定义的数据集 `MyDataset`,并且假设已经实现了 Transformer 模型。在训练过程中,我们使用了交叉熵损失函数,并且每个 epoch 结束后保存模型参数。
python写transformer模型模型,对时间序列进行预测
以下是一个简单的Transformer模型的Python代码,用于时间序列预测。
```python
import torch
import torch.nn as nn
import torch.optim as optim
class TransformerModel(nn.Module):
def __init__(self, d_model, nhead, num_layers, dim_feedforward, dropout=0.1):
super(TransformerModel, self).__init__()
self.model_type = 'Transformer'
self.pos_encoder = PositionalEncoding(d_model, dropout)
encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
self.encoder = nn.Linear(1, d_model)
self.d_model = d_model
self.decoder = nn.Linear(d_model, 1)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.encoder.bias.data.zero_()
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
# src shape: (seq_len, batch_size, 1)
src = self.encoder(src) * math.sqrt(self.d_model)
src = self.pos_encoder(src)
output = self.transformer_encoder(src)
output = self.decoder(output[-1,:,:])
return output
```
该模型使用了Transformer的编码器结构,其中包括嵌入层,位置编码层和多层Transformer编码器。输入数据的形状为(seq_len, batch_size, 1),其中seq_len是序列长度,batch_size是批次大小,1是输入数据的特征数量。模型输出的形状为(batch_size, 1),即预测值。
在训练过程中,可以使用标准的均方误差损失函数,并使用Adam优化器进行参数更新。
```python
model = TransformerModel(d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
```
在训练过程中,需要将数据转换为PyTorch的张量,并使用DataLoader对象进行批次处理。
```python
from torch.utils.data import DataLoader, TensorDataset
train_data = TensorDataset(torch.Tensor(train_X), torch.Tensor(train_y))
trainloader = DataLoader(train_data, batch_size=32, shuffle=True)
test_data = TensorDataset(torch.Tensor(test_X), torch.Tensor(test_y))
testloader = DataLoader(test_data, batch_size=32, shuffle=True)
```
最后,可以使用训练好的模型进行预测:
```python
with torch.no_grad():
for data in testloader:
inputs, labels = data
outputs = model(inputs)
print(outputs)
```
阅读全文