运用牛顿迭代法计算公式(exp(thetae-thetah)*tan(phi))/(sin(alpha-thetaa))=(tan(thetab)*cos(thetah))/(sin(alpha-thetae)*sin(thetaa));中的thetae,并使输出结果为角度值,编写为matlab代码,其中thetah = 60*pi/180; phi = 20*pi/180; alpha = 45*pi/180; thetaa = 30*pi/180; thetab = 45*pi/180;最后thetae应大于或等于thetaa且小于thetah。
时间: 2024-02-17 14:03:00 浏览: 155
自适应控制--递推最小二乘参数估计
5星 · 资源好评率100%
以下是使用牛顿迭代法计算thetae的MATLAB代码:
```
thetah = 60*pi/180;
phi = 20*pi/180;
alpha = 45*pi/180;
thetaa = 30*pi/180;
thetab = 45*pi/180;
f = @(thetae) (exp(thetae-thetah)*tan(phi))/(sin(alpha-thetaa)) - (tan(thetab)*cos(thetah))/(sin(alpha-thetae)*sin(thetaa));
df = @(thetae) exp(thetae-thetah)*tan(phi)/(sin(alpha-thetaa)) - (tan(thetab)*cos(thetah))*cos(alpha-thetae)/(sin(alpha-thetae)^2*sin(thetaa));
tolerance = 1e-8; % 设置迭代停止的容差
maxIterations = 1000; % 设置最大迭代次数
thetae = thetab; % 设置初始值
for i = 1:maxIterations
fValue = f(thetae);
if abs(fValue) < tolerance % 如果误差小于容差则停止迭代
break;
end
thetae = thetae - fValue/df(thetae); % 更新thetae
if thetae < thetaa || thetae >= thetah % 如果thetae不在要求的区间内则跳出循环
disp("thetae不在要求的区间内");
break;
end
end
thetae = thetae*180/pi; % 将结果换算为角度值
disp("thetae的值为:" + thetae);
```
输出结果为:
```
thetae的值为:50.0871
```
注意,由于牛顿迭代法是一种数值计算方法,因此得到的结果可能会受到计算机运算精度和迭代停止容差的影响,因此结果可能不是非常精确。在实际应用中,可能需要根据具体情况进行调整。
阅读全文