使用深度强化学习(DQN算法)来解决IEEE 30节点系统中的关键节点识别问题,并提供相应的Python代码
时间: 2023-06-11 07:10:37 浏览: 213
深度强化学习DQN算法python源码.zip
5星 · 资源好评率100%
关键节点识别问题可以被视为一个强化学习问题,其中智能体必须学习如何在电网中识别关键节点,以最小化电网的损失。在这里,我们将使用DQN算法来解决这个问题。
首先,让我们导入必要的库。
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from collections import deque
import gym
from gym import spaces
```
接下来,我们将定义一个类来表示IEEE 30节点电网。在这个类中,我们将加载电网的拓扑结构和负载数据,并定义状态和动作空间。我们还将定义一个函数来计算当前状态下的奖励。
```python
class IEEE30Env(gym.Env):
def __init__(self):
# load topology
self.topology = pd.read_excel('ieee30.xls', sheet_name='branchdata')
self.topology = self.topology[['FromBus', 'ToBus']].values
# load load data
self.loads = pd.read_excel('ieee30.xls', sheet_name='Loaddata')
self.loads = self.loads['P'].values
# define action space
self.action_space = spaces.Discrete(len(self.topology))
# define observation space
self.observation_space = spaces.Box(low=0, high=np.inf, shape=(len(self.loads),))
def step(self, action):
# get next state and reward based on action
next_state, reward, done, _ = self._take_action(action)
return next_state, reward, done, {}
def reset(self):
# reset to initial state
self.current_state = np.zeros(len(self.loads))
return self.current_state
def _take_action(self, action):
# apply action to topology
self.topology[action] = self.topology[action][::-1]
# calculate next state
next_state = np.zeros(len(self.loads))
for i in range(len(self.topology)):
p = self.loads[self.topology[i][1]-1]
next_state[self.topology[i][0]-1] += p
# calculate reward
reward = -np.sum(self.loads * next_state)
# determine if episode is done
done = False
if np.sum(next_state > 1.2*self.loads) > 0:
done = True
return next_state, reward, done, {}
def render(self, mode='human'):
pass
def close(self):
pass
```
接下来,我们将定义DQN代理和训练代码。
```python
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
class DQNAgent:
def __init__(self, state_size, action_size, learning_rate):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.learning_rate = learning_rate
self.model = self._build_model()
def _build_model(self):
model = tf.keras.Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.choice(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = np.array(random.sample(self.memory, batch_size))
states = np.vstack(minibatch[:, 0])
actions = minibatch[:, 1]
rewards = minibatch[:, 2]
next_states = np.vstack(minibatch[:, 3])
dones = minibatch[:, 4]
targets = rewards + self.gamma * np.max(self.model.predict(next_states), axis=1) * (1 - dones)
target_f = self.model.predict(states)
target_f[np.arange(len(actions)), actions] = targets
self.model.fit(states, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
env = IEEE30Env()
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size, 0.01)
done = False
batch_size = 32
EPISODES = 1000
for e in range(EPISODES):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}".format(e, EPISODES, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
```
该代码将在1000个episode上训练DQN代理来解决关键节点识别问题。在训练过程中,代理将学习如何在电网中识别关键节点,并在每个episode结束时输出分数和当前的探索率。
希望这个代码可以帮助你开始在电网中使用深度强化学习来解决关键节点识别问题。
阅读全文