使用深度强化学习(DQN算法)来解决IEEE30节点系统中的节点识别(节点重要度排序)问题(数据集为matpower中的.mat文件),并提供相应的Python代码
时间: 2023-06-11 16:09:59 浏览: 170
强化学习算法-基于python的深度强化学习dqn算法实现
5星 · 资源好评率100%
首先,需要安装以下Python库:
- numpy
- tensorflow
- keras
- matpower(用于读取.mat文件)
接下来,我们可以按照以下步骤来解决节点识别问题:
1. 读取.mat文件并提取所需数据
```python
import matpower
mpc = matpower.loadcase('case30.mat')
bus = mpc['bus'] # 节点信息
branch = mpc['branch'] # 支路信息
```
2. 构建状态空间和动作空间
可以将每个节点的电压幅值和相角作为状态,将节点编号作为动作。
```python
state_space = np.column_stack((bus[:, 8], bus[:, 9]))
action_space = bus[:, 0]
```
3. 定义DQN模型
```python
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(32, input_dim=2, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(len(action_space), activation='linear'))
model.compile(loss='mse', optimizer='adam')
```
4. 训练DQN模型
```python
from collections import deque
import random
# 定义经验回放缓冲区
buffer = deque(maxlen=10000)
# 定义其他超参数
epsilon = 1.0
epsilon_min = 0.01
epsilon_decay = 0.995
gamma = 0.95
batch_size = 32
# 定义训练函数
def train_model():
if len(buffer) < batch_size:
return
# 从经验回放缓冲区中随机采样一批数据
batch = random.sample(buffer, batch_size)
# 计算目标Q值
for state, action, reward, next_state, done in batch:
target = reward
if not done:
target = reward + gamma * np.amax(model.predict(next_state)[0])
target_f = model.predict(state)
target_f[0][np.where(action_space == action)] = target
# 训练模型
model.fit(state, target_f, epochs=1, verbose=0)
# 更新epsilon值
global epsilon
if epsilon > epsilon_min:
epsilon *= epsilon_decay
```
5. 定义Agent类并进行训练
```python
class Agent:
def __init__(self, state_space, action_space):
self.state_space = state_space
self.action_space = action_space
self.epsilon = epsilon
def act(self, state):
# epsilon-greedy策略选择动作
if np.random.rand() <= self.epsilon:
return np.random.choice(self.action_space)
q_values = model.predict(state)
return self.action_space[np.argmax(q_values[0])]
def remember(self, state, action, reward, next_state, done):
buffer.append((state, action, reward, next_state, done))
def play(self, episodes=1000, steps=100):
for e in range(episodes):
state = self.state_space[np.random.randint(0, len(self.state_space))]
for s in range(steps):
action = self.act(state.reshape(1, 2))
next_state, reward, done = self.step(state, action)
self.remember(state.reshape(1, 2), action, reward, next_state.reshape(1, 2), done)
state = next_state
train_model()
print('Episode %d/%d' % (e+1, episodes))
def step(self, state, action):
# 执行动作并返回下一个状态、奖励和是否结束的标志
index = np.where(bus[:, 0] == action)[0][0]
bus[index, 8] = 1.1
bus[index, 9] = 0.0
result = runpf(mpc)
reward = -result['f']
state = np.column_stack((bus[:, 8], bus[:, 9]))
done = False
if reward < -1000:
done = True
return state, reward, done
# 创建Agent对象并开始训练
agent = Agent(state_space, action_space)
agent.play()
```
最后,我们可以通过以下代码来输出节点重要度排序:
```python
import matplotlib.pyplot as plt
q_values = model.predict(state_space)
plt.figure(figsize=(12, 6))
plt.bar(action_space, q_values.flatten())
plt.xlabel('Bus ID')
plt.ylabel('Q Value')
plt.title('Node Importance')
plt.show()
```
阅读全文