Python利用深度强化学习(DQN算法)运行Ieee30节点系统的节点重要度排序时,显示gym.make("PowerGrid30-v0")不存在,应该怎么办,请搭建该代码需要的环境,附详细代码和步骤
时间: 2023-06-12 08:04:52 浏览: 253
基于python的深度强化学习DQN控制cartpole设计与实现
首先,你需要安装gym-power-grid环境,它是一个OpenAI Gym接口的电力系统仿真器。你可以使用以下命令安装:
```
pip install gym-power-grid
```
接着,你需要安装其他依赖项,包括tensorflow、keras等。你可以使用以下命令安装:
```
pip install tensorflow keras numpy matplotlib
```
然后,你需要下载IEEE 30节点系统的数据集。你可以从以下链接下载:
https://github.com/Suyi32/Learning-to-Run-Forecasting-and-Resilience-Analysis-of-Power-Systems/tree/master/IEEE30
在下载完数据集后,你可以使用以下代码来运行DQN算法:
```python
import gym
import gym_power_grid
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
import numpy as np
# 构建DQN模型
def build_model(input_shape, num_actions):
model = Sequential()
model.add(Dense(32, activation='relu', input_shape=input_shape))
model.add(Dense(32, activation='relu'))
model.add(Dense(num_actions, activation='linear'))
model.compile(loss='mse', optimizer=Adam())
return model
# DQN算法
def dqn(env, model, episodes):
# 定义超参数
gamma = 0.95
epsilon = 1.0
epsilon_min = 0.01
epsilon_decay = 0.995
batch_size = 32
memory = []
max_memory_size = 1000
steps = 0
# 进行多次迭代
for episode in range(episodes):
state = env.reset()
state = np.reshape(state, [1, -1])
done = False
total_reward = 0
while not done:
# 选择动作
if np.random.rand() <= epsilon:
action = env.action_space.sample()
else:
action = np.argmax(model.predict(state))
# 执行动作
next_state, reward, done, info = env.step(action)
next_state = np.reshape(next_state, [1, -1])
total_reward += reward
# 存储记忆
memory.append((state, action, reward, next_state, done))
if len(memory) > max_memory_size:
memory.pop(0)
# 训练模型
if len(memory) >= batch_size:
minibatch = np.array(memory[-batch_size:])
X = np.empty((0, env.observation_space.shape[0]))
Y = np.empty((0, env.action_space.n))
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = reward + gamma * np.amax(model.predict(next_state)[0])
q_values = model.predict(state)
q_values[0][action] = target
X = np.vstack([X, state])
Y = np.vstack([Y, q_values])
model.fit(X, Y, epochs=1, verbose=0)
state = next_state
steps += 1
# 更新epsilon
if epsilon > epsilon_min:
epsilon *= epsilon_decay
print("Episode: {}, Steps: {}, Total Reward: {}".format(episode, steps, total_reward))
# 运行DQN算法
env = gym.make("PowerGrid30-v0")
model = build_model(env.observation_space.shape, env.action_space.n)
dqn(env, model, 100)
```
在这个代码中,我们首先定义了一个`build_model`函数,用于构建DQN模型。然后,我们定义了一个`dqn`函数,用于实现DQN算法。最后,我们使用`gym.make`函数创建了一个名为"PowerGrid30-v0"的gym环境,并使用`build_model`和`dqn`函数运行DQN算法。
请注意,由于IEEE 30节点系统是一个非常复杂的系统,这个代码可能需要较长的时间来运行。
阅读全文