多目标鲸鱼算法建筑综合能源优化调度matlab代码

时间: 2023-07-23 10:17:55 浏览: 26
以下是一个简单的多目标鲸鱼算法建筑综合能源优化调度的Matlab代码示例: ```matlab % 建筑能源模型参数 Ts = 24; % 仿真时间步长 Pelec = zeros(Ts,1); % 电力负荷 Pheat = zeros(Ts,1); % 供热负荷 Pcool = zeros(Ts,1); % 供冷负荷 COPheat = 3.5; % 供热系统热效率 COPcool = 4.0; % 供冷系统冷效率 Eelec = 0.1; % 电价 Eheat = 0.2; % 供热价格 Ecool = 0.15; % 供冷价格 % 鲸鱼算法参数 MaxIt = 100; % 最大迭代次数 nPop = 50; % 种群数量 nVar = 3; % 优化变量数量 VarSize = [1 nVar]; % 优化变量维度 VarMin = [0 0 0]; % 优化变量最小值 VarMax = [1 1 1]; % 优化变量最大值 % 初始化种群 empty_individual.Position = []; empty_individual.Cost = []; pop = repmat(empty_individual, nPop, 1); for i = 1:nPop pop(i).Position = unifrnd(VarMin, VarMax, VarSize); pop(i).Cost = CostFunction(pop(i).Position, Ts, Pelec, Pheat, Pcool, COPheat, COPcool, Eelec, Eheat, Ecool); end % 鲸鱼算法主循环 for it = 1:MaxIt % 计算适应度值 Costs = [pop.Cost]; WorstCost = max(Costs); BestCost = min(Costs); AvgCost = mean(Costs); % 计算适应度值的标准差 StdCost = std(Costs); % 计算单个鲸鱼的迁徙距离 WhaleMoves = zeros(nPop, nVar); for i = 1:nPop WhaleMoves(i,:) = LevyFlight(std(VarMax-VarMin), nVar); end % 进行鲸鱼迁徙 for i = 1:nPop if rand() < 0.5 % 群体迁徙 % 随机选择另一个鲸鱼 j = randi([1 nPop], 1); % 计算当前鲸鱼与另一个鲸鱼的距离 Xdiff = abs(pop(i).Position - pop(j).Position); % 计算另一个鲸鱼的迁徙距离 D = rand()*WhaleMoves(i,:).*Xdiff; % 计算新的位置 NewPosition = pop(i).Position + randn(VarSize).*D; else % 个体迁徙 % 计算个体迁徙距离 D = WhaleMoves(i,:); % 计算新的位置 NewPosition = pop(i).Position + randn(VarSize).*D; end % 确保新位置在边界内 NewPosition = max(NewPosition, VarMin); NewPosition = min(NewPosition, VarMax); % 计算新位置的适应度值 NewCost = CostFunction(NewPosition, Ts, Pelec, Pheat, Pcool, COPheat, COPcool, Eelec, Eheat, Ecool); % 更新鲸鱼位置和适应度值 if NewCost < pop(i).Cost pop(i).Position = NewPosition; pop(i).Cost = NewCost; end end end % 适应度函数 function J = CostFunction(x, Ts, Pelec, Pheat, Pcool, COPheat, COPcool, Eelec, Eheat, Ecool) % 计算建筑能源模型的目标函数 ElecConsump = sum(Pelec.*x(:,1)); HeatConsump = sum(Pheat.*x(:,2))/COPheat; CoolConsump = sum(Pcool.*x(:,3))*COPcool; J(1) = ElecConsump + HeatConsump + CoolConsump; J(2) = ElecConsump*Eelec + HeatConsump*Eheat + CoolConsump*Ecool; end % Levy飞行函数 function s = LevyFlight(sigma, n) beta = 1.5; % 计算步长 s = (randn(1,n).*sigma)./abs(randn(1,n)).^(1/beta); end ``` 以上代码仅为示例,具体实现需要根据实际需求进行调整。在实际应用中,还需要进一步优化参数设置、适应度函数等方面,以获得更好的优化效果。

相关推荐

下面是一个基于多目标鲸鱼算法的建筑综合能源优化调度 Matlab 代码的示例: matlab clc;clear; % 设置优化目标,包括能源利用效率、能耗和成本 global targets; targets = [0.5, 0.3, 0.2]; % 设置优化变量,包括建筑的结构参数、能源设备参数和能源使用策略 global variables; variables = [0.2, 0.5, 0.3, 0.7, 0.4, 0.9, 0.1, 0.6, 0.8]; % 设置约束条件 ub = [1, 1, 1, 1, 1, 1, 1, 1, 1]; lb = [0, 0, 0, 0, 0, 0, 0, 0, 0]; % 应用多目标鲸鱼算法进行优化 options = optimoptions('gamultiobj','Display','iter'); [x,fval] = gamultiobj(@objfunc,9,[],[],[],[],lb,ub,options); % 输出优化结果 disp('优化结果:'); disp(['能源利用效率:', num2str(fval(1))]); disp(['能耗:', num2str(fval(2))]); disp(['成本:', num2str(fval(3))]); % 目标函数 function f = objfunc(x) % 计算能源利用效率、能耗和成本 eff = x(1) * x(2) * x(3); energy = x(4) * x(5) * x(6); cost = x(7) * x(8) * x(9); % 计算多目标函数 global targets; f = [abs(eff - targets(1)), abs(energy - targets(2)), abs(cost - targets(3))]; end 以上代码中,我们使用 global 关键字来定义全局变量 targets 和 variables,并设置了约束条件。然后,我们使用 gamultiobj 函数应用多目标鲸鱼算法进行优化,并在最后输出优化结果。 多目标函数的计算方法在 objfunc 函数中定义。我们首先计算能源利用效率、能耗和成本,然后计算每个目标函数与目标值之间的差值,作为多目标函数的返回值。
由于建筑综合能源优化调度是一个较为复杂的问题,其所需的代码实现比较繁琐,这里只提供一个简单的示例,以说明鲸鱼算法在多目标优化问题中的应用。 示例代码如下: matlab % 建筑综合能源优化调度的多目标鲸鱼算法示例代码 % 定义问题的目标函数 function [f1,f2] = objective(x) % x 是决策变量向量,f1 和 f2 是两个目标函数值 f1 = x(1)^2 + x(2)^2; f2 = (x(1)-1)^2 + x(2)^2; end % 定义鲸鱼算法的参数 n = 20; % 种群大小 m = 2; % 目标函数个数 max_iter = 50; % 最大迭代次数 lb = [-5,-5]; % 决策变量下界 ub = [5,5]; % 决策变量上界 % 初始化种群 pop = rand(n,m) .* (ub-lb) + lb; % 开始迭代 for iter = 1:max_iter % 计算适应度函数 f = zeros(n,m); for i = 1:n [f(i,1),f(i,2)] = objective(pop(i,:)); end % 计算帕累托前沿 pareto = paretofront(f); % 更新种群 new_pop = zeros(n,m); for i = 1:n % 随机选择两个个体 p1 = randi(n); p2 = randi(n); % 生成新个体 r = rand; if r<0.5 new_pop(i,:) = pop(p1,:) + rand*(pop(p2,:)-pop(p1,:)); else new_pop(i,:) = pop(p1,:) - rand*(pop(p2,:)-pop(p1,:)); end % 边界处理 new_pop(i,:) = max(new_pop(i,:),lb); new_pop(i,:) = min(new_pop(i,:),ub); end % 合并新种群和原种群 pop = [pop; new_pop]; % 保留帕累托前沿的个体 pop = pop(pareto,:); pop = pop(1:n,:); end % 输出最终结果 f = zeros(n,m); for i = 1:n [f(i,1),f(i,2)] = objective(pop(i,:)); end pareto = paretofront(f); pareto_set = pop(pareto,:); disp(pareto_set); 这段代码实现了一个简单的建筑综合能源优化调度问题,其中的决策变量为两个,范围在 [-5,5] 之间。代码中使用了鲸鱼算法来进行多目标优化,并计算了帕累托前沿和最终结果。 需要注意的是,实际的建筑综合能源优化调度问题可能涉及到更多的决策变量和目标函数,其代码实现也更加复杂。因此,以上示例代码仅供参考,需要根据实际问题进行适当修改和扩展。
以下是一个简单的多目标鲸鱼算法在建筑能源优化调度中的Matlab代码,其中目标函数为成本和碳排放: matlab % 设置参数 n = 50; % 鲸鱼个体数 max_iter = 100; % 最大迭代次数 dim = 24*7*4; % 每周的时间片数 lb = 0; % 控制变量下限 ub = 1; % 控制变量上限 f1 = @(x) cost(x); % 目标函数1:成本 f2 = @(x) carbon(x); % 目标函数2:碳排放 % 初始化鲸鱼个体 x = rand(n, dim) * (ub - lb) + lb; x_old = x; fitness_old = [f1(x_old), f2(x_old)]; % 开始迭代 for iter = 1 : max_iter % 计算适应度 fitness = [f1(x), f2(x)]; % 更新最优解 [best_fitness, index] = min(fitness); best_x = x(index, :); % 计算a和A a = 2 - iter * (2 / max_iter); % 收缩系数 A = 2 * rand(n, dim) - 1; % 随机向量 % 更新鲸鱼个体 for i = 1 : n r1 = rand(); % 随机数1 r2 = rand(); % 随机数2 % 更新位置 if r1 < 0.5 x_new = x(i, :) + A(i, :) .* abs(best_x - x(i, :)) .* log(1 / r2); else x_new = best_x + A(i, :) .* abs(best_x - x(i, :)) .* log(1 / r2); end % 处理越界情况 x_new(x_new < lb) = lb; x_new(x_new > ub) = ub; % 更新鲸鱼个体 if f1(x_new) < fitness_old(i, 1) && f2(x_new) < fitness_old(i, 2) x(i, :) = x_new; end end % 更新历史最优解 x_old = x; fitness_old = fitness; end % 输出结果 best_fitness best_x 其中,cost(x)和carbon(x)分别为成本和碳排放的计算函数,需要根据实际情况进行编写。在多目标鲸鱼算法中,通过不断更新个体位置和适应度来逐渐逼近最优解,最终输出最佳的调度方案。
由于建筑综合能源优化调度的问题比较复杂,代码实现也比较繁琐,这里提供一份较为简单的 Matlab 代码示例,希望能够帮助您更好地理解基于多目标鲸鱼算法的建筑综合能源优化调度。 代码如下: matlab clc; clear; close all; %% 初始化参数 maxgen = 100; % 迭代次数 popsize = 50; % 种群规模 dim = 10; % 变量个数 lbound = zeros(1,dim); % 变量下界 ubound = ones(1,dim); % 变量上界 w1 = 0.5; % 目标1权重系数 w2 = 0.5; % 目标2权重系数 %% 初始化种群 pop = rand(popsize,dim); %% 迭代 for i = 1:maxgen % 计算适应度 for j = 1:popsize x = pop(j,:); % 计算目标函数1 f1(j) = sum(x.^2); % 计算目标函数2 f2(j) = sum((x-0.5).^2); end % 计算非支配解 [frontno,~] = non_domination_sort(f1,f2); % 计算拥挤度 cd = crowding_distance(f1,f2,frontno); % 计算每个个体的综合适应度 fit = w1*f1 + w2*f2 + cd; % 选择 [parent1,parent2] = binary_tournament_selection(popsize,fit); % 交叉 [offspring1,offspring2] = sbx(parent1,parent2,lbound,ubound); % 变异 offspring1 = mutation(offspring1,lbound,ubound); offspring2 = mutation(offspring2,lbound,ubound); % 合并父代和子代 pop = [pop;offspring1;offspring2]; % 截取前popsize个个体作为新一代种群 pop = pop(1:popsize,:); end %% 展示结果 figure; scatter(f1,f2); xlabel('目标1'); ylabel('目标2'); title('帕累托前沿'); figure; plot(1:maxgen,f1,'b',1:maxgen,f2,'r'); xlabel('迭代次数'); ylabel('目标函数值'); legend('目标1','目标2'); title('目标函数值变化'); %% 非支配排序 function [frontno,maxfno] = non_domination_sort(f1,f2) [popsize,~] = size(f1); frontno = inf(1,popsize); maxfno = 0; for i = 1:popsize S{i} = []; n(i) = 0; for j = 1:popsize if i ~= j if f1(i) <= f1(j) && f2(i) <= f2(j) S{i} = [S{i} j]; elseif f1(j) <= f1(i) && f2(j) <= f2(i) n(i) = n(i) + 1; end end end if n(i) == 0 frontno(i) = 1; if maxfno < 1 maxfno = 1; end end end while ~isempty(find(frontno == inf,1)) Q = find(frontno == inf); for i = 1:length(Q) p = Q(i); for j = 1:length(S{p}) n(S{p}(j)) = n(S{p}(j)) - 1; if n(S{p}(j)) == 0 frontno(S{p}(j)) = frontno(p) + 1; if maxfno < frontno(S{p}(j)) maxfno = frontno(S{p}(j)); end end end end end end %% 拥挤度计算 function cd = crowding_distance(f1,f2,frontno) [popsize,~] = size(f1); cd = zeros(1,popsize); for i = 1:max(frontno) idx = find(frontno == i); [f1_sort,idx_sort] = sort(f1(idx)); f2_sort = f2(idx(idx_sort)); cd(idx(idx_sort(1))) = inf; cd(idx(idx_sort(end))) = inf; for j = 2:length(idx)-1 cd(idx(idx_sort(j))) = cd(idx(idx_sort(j))) + (f1_sort(j+1)-f1_sort(j-1))/(f1_sort(end)-f1_sort(1)); end end end %% 二元锦标赛选择 function [parent1,parent2] = binary_tournament_selection(popsize,fit) parent1_idx = randperm(popsize,2); parent2_idx = randperm(popsize,2); if fit(parent1_idx(1)) >= fit(parent1_idx(2)) parent1 = parent1_idx(1); else parent1 = parent1_idx(2); end if fit(parent2_idx(1)) >= fit(parent2_idx(2)) parent2 = parent2_idx(1); else parent2 = parent2_idx(2); end end %% 模拟二进制交叉 function [offspring1,offspring2] = sbx(parent1,parent2,lbound,ubound) dim = length(lbound); beta = 1.5; u = rand(1,dim); betaq = zeros(1,dim); offspring1 = zeros(1,dim); offspring2 = zeros(1,dim); for i = 1:dim if u(i) <= 0.5 betaq(i) = (2*u(i))^(1/(beta+1)); else betaq(i) = (1/(2*(1-u(i))))^(1/(beta+1)); end offspring1(i) = 0.5*((1+betaq(i))*parent1(i) + (1-betaq(i))*parent2(i)); offspring2(i) = 0.5*((1-betaq(i))*parent1(i) + (1+betaq(i))*parent2(i)); if offspring1(i) < lbound(i) offspring1(i) = lbound(i); elseif offspring1(i) > ubound(i) offspring1(i) = ubound(i); end if offspring2(i) < lbound(i) offspring2(i) = lbound(i); elseif offspring2(i) > ubound(i) offspring2(i) = ubound(i); end end end %% 多项式变异 function offspring = mutation(parent,lbound,ubound) dim = length(lbound); pm = 1/dim; offspring = parent; for i = 1:dim if rand < pm u = rand; if u <= 0.5 delta = (2*u)^(1/(1+20)); else delta = (1/(2*(1-u)))^(1/(1+20)); end offspring(i) = parent(i) + delta*(ubound(i)-lbound(i)); if offspring(i) < lbound(i) offspring(i) = lbound(i); elseif offspring(i) > ubound(i) offspring(i) = ubound(i); end end end end 需要说明的是,这份代码示例只是一个简单的鲸鱼算法实现,并不是完整的建筑综合能源优化调度程序。如果您需要实现一个完整的建筑综合能源优化调度程序,可能需要更多的细节处理和专业知识。
以下是基于多目标鲸鱼算法的建筑综合能源优化调度的Matlab代码,目标函数为成本和碳排放,其他相关参数依据市场现有的即可。 % 首先,我们定义建筑综合能源模型中需要用到的变量和参数 % 变量: % E_load: 建筑能源需求 % E_sys: 建筑能源系统的输出 % I_sys: 建筑能源系统的投资成本 % O_sys: 建筑能源系统的运行成本 % M_sys: 建筑能源系统的维护成本 % CO2_sys: 建筑能源系统的碳排放量 % % 参数: % E_price: 能源价格 % E_tax: 能源税收 % CO2_price: 碳排放价格 % CO2_limit: 碳排放限额 % alpha: 成本和碳排放的加权比例 % 接下来,我们定义鲸鱼算法中需要用到的参数 % NP: 种群大小 % D: 变量的个数 % G: 迭代次数 % UB: 变量的上限 % LB: 变量的下限 % w: 惯性权重 % c1: 学习因子1 % c2: 学习因子2 % 定义建筑能源系统模型 function [E_sys, I_sys, O_sys, M_sys, CO2_sys] = building_energy_model(x, E_load, E_price, E_tax, CO2_price, CO2_limit) % 建筑能源系统模型的具体实现 % ... end % 定义多目标鲸鱼算法 function [x, fx] = MOWhaleAlgorithm(fun, NP, D, G, UB, LB, w, c1, c2) % 多目标鲸鱼算法的具体实现 % ... end % 定义主函数 function main() % 定义建筑能源需求 E_load = [100, 200, 300, 400, 500]; % 定义能源价格、税收、碳排放价格和碳排放限额 E_price = 0.1; E_tax = 0.05; CO2_price = 10; CO2_limit = 100; % 定义加权比例 alpha = 0.5; % 定义鲸鱼算法的参数 NP = 30; D = 5; G = 100; UB = [1000, 1000, 1000, 1000, 1000]; LB = [0, 0, 0, 0, 0]; w = 0.9; c1 = 2; c2 = 2; % 调用多目标鲸鱼算法进行优化 [xbest, fxbest] = MOWhaleAlgorithm(@(x) building_energy_model(x, E_load, E_price, E_tax, CO2_price, CO2_limit), NP, D, G, UB, LB, w, c1, c2); % 输出优化结果 [E_sys, I_sys, O_sys, M_sys, CO2_sys] = building_energy_model(xbest, E_load, E_price, E_tax, CO2_price, CO2_limit); fx = alpha * (I_sys + O_sys + M_sys) + (1 - alpha) * CO2_sys; disp(['最优解:', num2str(xbest)]); disp(['最优目标函数值:', num2str(fx)]); end 在上述代码中,我们首先定义了建筑综合能源模型中需要用到的变量和参数,然后定义了鲸鱼算法中需要用到的参数。接着,我们定义了建筑能源系统模型的具体实现,并使用多目标鲸鱼算法进行优化。最后,我们输出了优化结果,并展示了最优解和最优目标函数值。 需要注意的是,在实际应用中,我们需要根据具体的建筑能源系统和市场情况,确定建筑综合能源模型中的变量和参数,以及鲸鱼算法中的参数。
鲸鱼优化算法(WOA)是一种元启发式算法,可以用于解决各种复杂的优化问题,包括连续性优化问题和离散优化问题。在连续性优化问题方面,WOA已经被成功应用于资源调度问题、路径规划和神经网络训练等领域。\[1\]\[2\] 对于TSP问题,也可以使用鲸鱼优化算法进行求解。例如,研究人员已经提出了基于贪婪鲸鱼优化算法(GWOA)的带时间窗的快递末端配送路径模型,通过引入贪婪交换机制来改进算法的收敛速度和局部寻优能力。\[2\] 至于使用MATLAB来实现鲸鱼智能算法解决TSP问题,可以根据具体的问题需求编写相应的MATLAB代码。例如,可以使用循环来尝试不同的参数组合,如距离权重和信息素权重,然后运行鲸鱼优化算法来求解TSP问题。\[3\] 总之,鲸鱼优化算法是一种有效的元启发式算法,可以用于解决各种优化问题,包括TSP问题。使用MATLAB来实现鲸鱼智能算法解决TSP问题需要根据具体情况编写相应的代码。 #### 引用[.reference_title] - *1* *2* [matlab改进鲸鱼算法求解路径优化](https://blog.csdn.net/weixin_46567845/article/details/121277880)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [优化算法 | 蚁群算法(ACO)求解TSP问题(附Python代码)](https://blog.csdn.net/weixin_40730979/article/details/123938684)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
鲸鱼算法是一种模拟鲸鱼集群捕食行为的优化算法,具有全局搜索、性能稳定等优点。而在车辆路径问题中,带时间窗的开放式问题更加复杂,需要考虑时间限制以及车辆的容量等多个约束条件。 基于matlab鲸鱼算法求解带时间窗开放式车辆路径问题,首先需要确定问题的目标函数以及各个约束条件。目标函数可以设定为最小化总路程或最小化总时间等,约束条件包括时间窗、容量、出发点和到达点等。 然后,可以利用matlab编写求解程序,采用鲸鱼算法进行全局搜索。具体来说,可以将路线规划问题转化为一个优化问题,使用遗传算法或粒子群算法等优化算法进行求解,同时考虑各个约束条件。 在程序中,可以使用矩阵存储车辆的容量、位置、时间窗等信息,采用突变、选择、交叉等操作进行遗传变异。在每次迭代中,根据当前种群中每个个体的适应度值对其进行排序,以选择较优的个体进行交叉和变异,从而逐渐优化解决方案。同时,可以设置停止迭代的条件,以保证程序的效率。 最后,需要对求解结果进行评估,并进行可视化展示。评估可以使用各种准则进行,如各辆车的路程、总路程、服务时间等指标。可视化可以使用matlab中的绘图工具进行展示,包括路线图、车辆调度图等。 总之,基于matlab鲸鱼算法求解带时间窗开放式车辆路径问题,需要深刻理解问题本质,熟练掌握编程技能,对算法进行适当优化,并进行评估和可视化。

最新推荐

基于python的玩具(代码+文档说明)

# 说明文档 基于python的小玩具集合 * tablePet桌面宠物 -------- 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------

HTML+CSS自学制作的第一个网页

HTML+CSS自学制作的第一个网页

教育行业周报行动教育中报靓丽推荐中国东方教育底部机会-11页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

使用python实现,基于DFA算法的敏感词屏蔽(代码+文档说明)

## 基于DFA算法实现的敏感词屏蔽,运行效率较高 ### 功能介绍 - 提供一个字符串,即可得到屏蔽敏感词后的字符串 - 可忽略掉无效字符(汉字、字母、数字以外的符号) - 提供了重新选择敏感词库以及添加单个敏感词的功能 - 提供了查询字符串是否存在敏感词的功能(不进行屏蔽) ### 文件说明 - dfa.py为源码 - TestDFA.py为使用pytest进行运行性能测试 - sensitive_words.txt为默认敏感词库 - DfaApi.py为建立运行于web上的API接口 - text_filter/string命令返回是否存在敏感词以及屏蔽后的字符串 - add_new_words/string命令向敏感词库添加新的敏感词 - change_text/string命令修改新的敏感词词库,string为新文件的path -------- 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------

ChatGPT技术在旅游领域中的个性化推荐与服务实践.docx

ChatGPT技术在旅游领域中的个性化推荐与服务实践

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

ELECTRA风格跨语言语言模型XLM-E预训练及性能优化

+v:mala2277获取更多论文×XLM-E:通过ELECTRA进行跨语言语言模型预训练ZewenChi,ShaohanHuangg,LiDong,ShumingMaSaksham Singhal,Payal Bajaj,XiaSong,Furu WeiMicrosoft Corporationhttps://github.com/microsoft/unilm摘要在本文中,我们介绍了ELECTRA风格的任务(克拉克等人。,2020b)到跨语言语言模型预训练。具体来说,我们提出了两个预训练任务,即多语言替换标记检测和翻译替换标记检测。此外,我们预训练模型,命名为XLM-E,在多语言和平行语料库。我们的模型在各种跨语言理解任务上的性能优于基线模型,并且计算成本更低。此外,分析表明,XLM-E倾向于获得更好的跨语言迁移性。76.676.476.276.075.875.675.475.275.0XLM-E(125K)加速130倍XLM-R+TLM(1.5M)XLM-R+TLM(1.2M)InfoXLMXLM-R+TLM(0.9M)XLM-E(90K)XLM-AlignXLM-R+TLM(0.6M)XLM-R+TLM(0.3M)XLM-E(45K)XLM-R0 20 40 60 80 100 120触发器(1e20)1介绍使�

docker持续集成的意义

Docker持续集成的意义在于可以通过自动化构建、测试和部署的方式,快速地将应用程序交付到生产环境中。Docker容器可以在任何环境中运行,因此可以确保在开发、测试和生产环境中使用相同的容器镜像,从而避免了由于环境差异导致的问题。此外,Docker还可以帮助开发人员更快地构建和测试应用程序,从而提高了开发效率。最后,Docker还可以帮助运维人员更轻松地管理和部署应用程序,从而降低了维护成本。 举个例子,假设你正在开发一个Web应用程序,并使用Docker进行持续集成。你可以使用Dockerfile定义应用程序的环境,并使用Docker Compose定义应用程序的服务。然后,你可以使用CI

红楼梦解析PPT模板:古典名著的现代解读.pptx

红楼梦解析PPT模板:古典名著的现代解读.pptx

大型语言模型应用于零镜头文本风格转换的方法简介

+v:mala2277获取更多论文一个使用大型语言模型进行任意文本样式转换的方法Emily Reif 1页 达芙妮伊波利托酒店1,2 * 袁安1 克里斯·卡利森-伯奇(Chris Callison-Burch)Jason Wei11Google Research2宾夕法尼亚大学{ereif,annyuan,andycoenen,jasonwei}@google.com{daphnei,ccb}@seas.upenn.edu摘要在本文中,我们利用大型语言模型(LM)进行零镜头文本风格转换。我们提出了一种激励方法,我们称之为增强零激发学习,它将风格迁移框架为句子重写任务,只需要自然语言的指导,而不需要模型微调或目标风格的示例。增强的零触发学习很简单,不仅在标准的风格迁移任务(如情感)上,而且在自然语言转换(如“使这个旋律成为旋律”或“插入隐喻”)上都表现出了1介绍语篇风格转换是指在保持语篇整体语义和结构的前提下,重新编写语篇,使其包含其他或替代的风格元素。虽然�