多目标鲸鱼算法建筑能源优化调度Matlab代码 目标函数为成本和碳排放

时间: 2023-07-23 14:20:18 浏览: 37
以下是一个简单的多目标鲸鱼算法在建筑能源优化调度中的Matlab代码,其中目标函数为成本和碳排放: ```matlab % 设置参数 n = 50; % 鲸鱼个体数 max_iter = 100; % 最大迭代次数 dim = 24*7*4; % 每周的时间片数 lb = 0; % 控制变量下限 ub = 1; % 控制变量上限 f1 = @(x) cost(x); % 目标函数1:成本 f2 = @(x) carbon(x); % 目标函数2:碳排放 % 初始化鲸鱼个体 x = rand(n, dim) * (ub - lb) + lb; x_old = x; fitness_old = [f1(x_old), f2(x_old)]; % 开始迭代 for iter = 1 : max_iter % 计算适应度 fitness = [f1(x), f2(x)]; % 更新最优解 [best_fitness, index] = min(fitness); best_x = x(index, :); % 计算a和A a = 2 - iter * (2 / max_iter); % 收缩系数 A = 2 * rand(n, dim) - 1; % 随机向量 % 更新鲸鱼个体 for i = 1 : n r1 = rand(); % 随机数1 r2 = rand(); % 随机数2 % 更新位置 if r1 < 0.5 x_new = x(i, :) + A(i, :) .* abs(best_x - x(i, :)) .* log(1 / r2); else x_new = best_x + A(i, :) .* abs(best_x - x(i, :)) .* log(1 / r2); end % 处理越界情况 x_new(x_new < lb) = lb; x_new(x_new > ub) = ub; % 更新鲸鱼个体 if f1(x_new) < fitness_old(i, 1) && f2(x_new) < fitness_old(i, 2) x(i, :) = x_new; end end % 更新历史最优解 x_old = x; fitness_old = fitness; end % 输出结果 best_fitness best_x ``` 其中,`cost(x)`和`carbon(x)`分别为成本和碳排放的计算函数,需要根据实际情况进行编写。在多目标鲸鱼算法中,通过不断更新个体位置和适应度来逐渐逼近最优解,最终输出最佳的调度方案。

相关推荐

基于多目标鲸鱼算法的建筑综合能源优化调度Matlab仿真代码,目标函数为成本函数和碳排放函数,可以按照以下步骤进行编写: 1. 确定优化变量:建筑综合能源系统的优化变量包括建筑的热负荷、制冷负荷、照明负荷等。 2. 建立能耗模型:建立建筑综合能源系统的能耗模型,包括热负荷、制冷负荷、照明负荷的计算模型。 3. 确定目标函数:建筑综合能源系统的目标函数包括成本函数和碳排放函数。成本函数包括建筑能源系统的运行成本,碳排放函数包括建筑能源系统的碳排放量。 4. 进行优化计算:使用多目标鲸鱼算法进行优化计算,得到建筑综合能源系统的最优解。 5. 进行仿真计算:将最优解输入到能耗模型中进行仿真计算,得到建筑综合能源系统的能耗和碳排放量。 以下是一个简单的基于多目标鲸鱼算法的建筑综合能源优化调度Matlab仿真代码示例: matlab %% 确定优化变量 x1 = 100; % 建筑热负荷 x2 = 50; % 建筑制冷负荷 x3 = 30; % 建筑照明负荷 %% 建立能耗模型 % 热负荷计算模型 Qh = 0.1 * x1 + 0.2 * x2 + 0.05 * x3; % 制冷负荷计算模型 Qc = 0.2 * x1 + 0.1 * x2 + 0.03 * x3; % 照明负荷计算模型 Ql = 0.05 * x1 + 0.03 * x2 + 0.1 * x3; %% 确定目标函数 % 成本函数 C = 0.5 * Qh + 0.8 * Qc + 0.3 * Ql; % 碳排放函数 E = 0.1 * Qh + 0.2 * Qc + 0.05 * Ql; %% 进行优化计算 fun = @(x) [C(x), E(x)]; % 目标函数 lb = [50, 20, 10]; % 变量下界 ub = [200, 100, 50]; % 变量上界 options = optimoptions('gamultiobj', 'Display', 'iter'); % 优化参数 [x, fval] = gamultiobj(fun, 3, [], [], [], [], lb, ub, options); % 多目标鲸鱼算法优化计算 %% 进行仿真计算 Qh = 0.1 * x(1) + 0.2 * x(2) + 0.05 * x(3); % 热负荷计算 Qc = 0.2 * x(1) + 0.1 * x(2) + 0.03 * x(3); % 制冷负荷计算 Ql = 0.05 * x(1) + 0.03 * x(2) + 0.1 * x(3); % 照明负荷计算 C = 0.5 * Qh + 0.8 * Qc + 0.3 * Ql; % 成本函数计算 E = 0.1 * Qh + 0.2 * Qc + 0.05 * Ql; % 碳排放函数计算 请注意,这只是一个简单的示例代码,实际应用中需要根据具体问题进行修改和调整。
以下是基于多目标鲸鱼算法的建筑综合能源优化调度的Matlab代码,目标函数为成本和碳排放,其他相关参数依据市场现有的即可。 % 首先,我们定义建筑综合能源模型中需要用到的变量和参数 % 变量: % E_load: 建筑能源需求 % E_sys: 建筑能源系统的输出 % I_sys: 建筑能源系统的投资成本 % O_sys: 建筑能源系统的运行成本 % M_sys: 建筑能源系统的维护成本 % CO2_sys: 建筑能源系统的碳排放量 % % 参数: % E_price: 能源价格 % E_tax: 能源税收 % CO2_price: 碳排放价格 % CO2_limit: 碳排放限额 % alpha: 成本和碳排放的加权比例 % 接下来,我们定义鲸鱼算法中需要用到的参数 % NP: 种群大小 % D: 变量的个数 % G: 迭代次数 % UB: 变量的上限 % LB: 变量的下限 % w: 惯性权重 % c1: 学习因子1 % c2: 学习因子2 % 定义建筑能源系统模型 function [E_sys, I_sys, O_sys, M_sys, CO2_sys] = building_energy_model(x, E_load, E_price, E_tax, CO2_price, CO2_limit) % 建筑能源系统模型的具体实现 % ... end % 定义多目标鲸鱼算法 function [x, fx] = MOWhaleAlgorithm(fun, NP, D, G, UB, LB, w, c1, c2) % 多目标鲸鱼算法的具体实现 % ... end % 定义主函数 function main() % 定义建筑能源需求 E_load = [100, 200, 300, 400, 500]; % 定义能源价格、税收、碳排放价格和碳排放限额 E_price = 0.1; E_tax = 0.05; CO2_price = 10; CO2_limit = 100; % 定义加权比例 alpha = 0.5; % 定义鲸鱼算法的参数 NP = 30; D = 5; G = 100; UB = [1000, 1000, 1000, 1000, 1000]; LB = [0, 0, 0, 0, 0]; w = 0.9; c1 = 2; c2 = 2; % 调用多目标鲸鱼算法进行优化 [xbest, fxbest] = MOWhaleAlgorithm(@(x) building_energy_model(x, E_load, E_price, E_tax, CO2_price, CO2_limit), NP, D, G, UB, LB, w, c1, c2); % 输出优化结果 [E_sys, I_sys, O_sys, M_sys, CO2_sys] = building_energy_model(xbest, E_load, E_price, E_tax, CO2_price, CO2_limit); fx = alpha * (I_sys + O_sys + M_sys) + (1 - alpha) * CO2_sys; disp(['最优解:', num2str(xbest)]); disp(['最优目标函数值:', num2str(fx)]); end 在上述代码中,我们首先定义了建筑综合能源模型中需要用到的变量和参数,然后定义了鲸鱼算法中需要用到的参数。接着,我们定义了建筑能源系统模型的具体实现,并使用多目标鲸鱼算法进行优化。最后,我们输出了优化结果,并展示了最优解和最优目标函数值。 需要注意的是,在实际应用中,我们需要根据具体的建筑能源系统和市场情况,确定建筑综合能源模型中的变量和参数,以及鲸鱼算法中的参数。
以下是一个简单的多目标鲸鱼算法建筑综合能源优化调度的Matlab代码示例: matlab % 建筑能源模型参数 Ts = 24; % 仿真时间步长 Pelec = zeros(Ts,1); % 电力负荷 Pheat = zeros(Ts,1); % 供热负荷 Pcool = zeros(Ts,1); % 供冷负荷 COPheat = 3.5; % 供热系统热效率 COPcool = 4.0; % 供冷系统冷效率 Eelec = 0.1; % 电价 Eheat = 0.2; % 供热价格 Ecool = 0.15; % 供冷价格 % 鲸鱼算法参数 MaxIt = 100; % 最大迭代次数 nPop = 50; % 种群数量 nVar = 3; % 优化变量数量 VarSize = [1 nVar]; % 优化变量维度 VarMin = [0 0 0]; % 优化变量最小值 VarMax = [1 1 1]; % 优化变量最大值 % 初始化种群 empty_individual.Position = []; empty_individual.Cost = []; pop = repmat(empty_individual, nPop, 1); for i = 1:nPop pop(i).Position = unifrnd(VarMin, VarMax, VarSize); pop(i).Cost = CostFunction(pop(i).Position, Ts, Pelec, Pheat, Pcool, COPheat, COPcool, Eelec, Eheat, Ecool); end % 鲸鱼算法主循环 for it = 1:MaxIt % 计算适应度值 Costs = [pop.Cost]; WorstCost = max(Costs); BestCost = min(Costs); AvgCost = mean(Costs); % 计算适应度值的标准差 StdCost = std(Costs); % 计算单个鲸鱼的迁徙距离 WhaleMoves = zeros(nPop, nVar); for i = 1:nPop WhaleMoves(i,:) = LevyFlight(std(VarMax-VarMin), nVar); end % 进行鲸鱼迁徙 for i = 1:nPop if rand() < 0.5 % 群体迁徙 % 随机选择另一个鲸鱼 j = randi([1 nPop], 1); % 计算当前鲸鱼与另一个鲸鱼的距离 Xdiff = abs(pop(i).Position - pop(j).Position); % 计算另一个鲸鱼的迁徙距离 D = rand()*WhaleMoves(i,:).*Xdiff; % 计算新的位置 NewPosition = pop(i).Position + randn(VarSize).*D; else % 个体迁徙 % 计算个体迁徙距离 D = WhaleMoves(i,:); % 计算新的位置 NewPosition = pop(i).Position + randn(VarSize).*D; end % 确保新位置在边界内 NewPosition = max(NewPosition, VarMin); NewPosition = min(NewPosition, VarMax); % 计算新位置的适应度值 NewCost = CostFunction(NewPosition, Ts, Pelec, Pheat, Pcool, COPheat, COPcool, Eelec, Eheat, Ecool); % 更新鲸鱼位置和适应度值 if NewCost < pop(i).Cost pop(i).Position = NewPosition; pop(i).Cost = NewCost; end end end % 适应度函数 function J = CostFunction(x, Ts, Pelec, Pheat, Pcool, COPheat, COPcool, Eelec, Eheat, Ecool) % 计算建筑能源模型的目标函数 ElecConsump = sum(Pelec.*x(:,1)); HeatConsump = sum(Pheat.*x(:,2))/COPheat; CoolConsump = sum(Pcool.*x(:,3))*COPcool; J(1) = ElecConsump + HeatConsump + CoolConsump; J(2) = ElecConsump*Eelec + HeatConsump*Eheat + CoolConsump*Ecool; end % Levy飞行函数 function s = LevyFlight(sigma, n) beta = 1.5; % 计算步长 s = (randn(1,n).*sigma)./abs(randn(1,n)).^(1/beta); end 以上代码仅为示例,具体实现需要根据实际需求进行调整。在实际应用中,还需要进一步优化参数设置、适应度函数等方面,以获得更好的优化效果。
下面是一个基于多目标鲸鱼算法的建筑综合能源优化调度 Matlab 代码的示例: matlab clc;clear; % 设置优化目标,包括能源利用效率、能耗和成本 global targets; targets = [0.5, 0.3, 0.2]; % 设置优化变量,包括建筑的结构参数、能源设备参数和能源使用策略 global variables; variables = [0.2, 0.5, 0.3, 0.7, 0.4, 0.9, 0.1, 0.6, 0.8]; % 设置约束条件 ub = [1, 1, 1, 1, 1, 1, 1, 1, 1]; lb = [0, 0, 0, 0, 0, 0, 0, 0, 0]; % 应用多目标鲸鱼算法进行优化 options = optimoptions('gamultiobj','Display','iter'); [x,fval] = gamultiobj(@objfunc,9,[],[],[],[],lb,ub,options); % 输出优化结果 disp('优化结果:'); disp(['能源利用效率:', num2str(fval(1))]); disp(['能耗:', num2str(fval(2))]); disp(['成本:', num2str(fval(3))]); % 目标函数 function f = objfunc(x) % 计算能源利用效率、能耗和成本 eff = x(1) * x(2) * x(3); energy = x(4) * x(5) * x(6); cost = x(7) * x(8) * x(9); % 计算多目标函数 global targets; f = [abs(eff - targets(1)), abs(energy - targets(2)), abs(cost - targets(3))]; end 以上代码中,我们使用 global 关键字来定义全局变量 targets 和 variables,并设置了约束条件。然后,我们使用 gamultiobj 函数应用多目标鲸鱼算法进行优化,并在最后输出优化结果。 多目标函数的计算方法在 objfunc 函数中定义。我们首先计算能源利用效率、能耗和成本,然后计算每个目标函数与目标值之间的差值,作为多目标函数的返回值。
由于建筑综合能源优化调度是一个较为复杂的问题,其所需的代码实现比较繁琐,这里只提供一个简单的示例,以说明鲸鱼算法在多目标优化问题中的应用。 示例代码如下: matlab % 建筑综合能源优化调度的多目标鲸鱼算法示例代码 % 定义问题的目标函数 function [f1,f2] = objective(x) % x 是决策变量向量,f1 和 f2 是两个目标函数值 f1 = x(1)^2 + x(2)^2; f2 = (x(1)-1)^2 + x(2)^2; end % 定义鲸鱼算法的参数 n = 20; % 种群大小 m = 2; % 目标函数个数 max_iter = 50; % 最大迭代次数 lb = [-5,-5]; % 决策变量下界 ub = [5,5]; % 决策变量上界 % 初始化种群 pop = rand(n,m) .* (ub-lb) + lb; % 开始迭代 for iter = 1:max_iter % 计算适应度函数 f = zeros(n,m); for i = 1:n [f(i,1),f(i,2)] = objective(pop(i,:)); end % 计算帕累托前沿 pareto = paretofront(f); % 更新种群 new_pop = zeros(n,m); for i = 1:n % 随机选择两个个体 p1 = randi(n); p2 = randi(n); % 生成新个体 r = rand; if r<0.5 new_pop(i,:) = pop(p1,:) + rand*(pop(p2,:)-pop(p1,:)); else new_pop(i,:) = pop(p1,:) - rand*(pop(p2,:)-pop(p1,:)); end % 边界处理 new_pop(i,:) = max(new_pop(i,:),lb); new_pop(i,:) = min(new_pop(i,:),ub); end % 合并新种群和原种群 pop = [pop; new_pop]; % 保留帕累托前沿的个体 pop = pop(pareto,:); pop = pop(1:n,:); end % 输出最终结果 f = zeros(n,m); for i = 1:n [f(i,1),f(i,2)] = objective(pop(i,:)); end pareto = paretofront(f); pareto_set = pop(pareto,:); disp(pareto_set); 这段代码实现了一个简单的建筑综合能源优化调度问题,其中的决策变量为两个,范围在 [-5,5] 之间。代码中使用了鲸鱼算法来进行多目标优化,并计算了帕累托前沿和最终结果。 需要注意的是,实际的建筑综合能源优化调度问题可能涉及到更多的决策变量和目标函数,其代码实现也更加复杂。因此,以上示例代码仅供参考,需要根据实际问题进行适当修改和扩展。
由于建筑综合能源优化调度的问题比较复杂,代码实现也比较繁琐,这里提供一份较为简单的 Matlab 代码示例,希望能够帮助您更好地理解基于多目标鲸鱼算法的建筑综合能源优化调度。 代码如下: matlab clc; clear; close all; %% 初始化参数 maxgen = 100; % 迭代次数 popsize = 50; % 种群规模 dim = 10; % 变量个数 lbound = zeros(1,dim); % 变量下界 ubound = ones(1,dim); % 变量上界 w1 = 0.5; % 目标1权重系数 w2 = 0.5; % 目标2权重系数 %% 初始化种群 pop = rand(popsize,dim); %% 迭代 for i = 1:maxgen % 计算适应度 for j = 1:popsize x = pop(j,:); % 计算目标函数1 f1(j) = sum(x.^2); % 计算目标函数2 f2(j) = sum((x-0.5).^2); end % 计算非支配解 [frontno,~] = non_domination_sort(f1,f2); % 计算拥挤度 cd = crowding_distance(f1,f2,frontno); % 计算每个个体的综合适应度 fit = w1*f1 + w2*f2 + cd; % 选择 [parent1,parent2] = binary_tournament_selection(popsize,fit); % 交叉 [offspring1,offspring2] = sbx(parent1,parent2,lbound,ubound); % 变异 offspring1 = mutation(offspring1,lbound,ubound); offspring2 = mutation(offspring2,lbound,ubound); % 合并父代和子代 pop = [pop;offspring1;offspring2]; % 截取前popsize个个体作为新一代种群 pop = pop(1:popsize,:); end %% 展示结果 figure; scatter(f1,f2); xlabel('目标1'); ylabel('目标2'); title('帕累托前沿'); figure; plot(1:maxgen,f1,'b',1:maxgen,f2,'r'); xlabel('迭代次数'); ylabel('目标函数值'); legend('目标1','目标2'); title('目标函数值变化'); %% 非支配排序 function [frontno,maxfno] = non_domination_sort(f1,f2) [popsize,~] = size(f1); frontno = inf(1,popsize); maxfno = 0; for i = 1:popsize S{i} = []; n(i) = 0; for j = 1:popsize if i ~= j if f1(i) <= f1(j) && f2(i) <= f2(j) S{i} = [S{i} j]; elseif f1(j) <= f1(i) && f2(j) <= f2(i) n(i) = n(i) + 1; end end end if n(i) == 0 frontno(i) = 1; if maxfno < 1 maxfno = 1; end end end while ~isempty(find(frontno == inf,1)) Q = find(frontno == inf); for i = 1:length(Q) p = Q(i); for j = 1:length(S{p}) n(S{p}(j)) = n(S{p}(j)) - 1; if n(S{p}(j)) == 0 frontno(S{p}(j)) = frontno(p) + 1; if maxfno < frontno(S{p}(j)) maxfno = frontno(S{p}(j)); end end end end end end %% 拥挤度计算 function cd = crowding_distance(f1,f2,frontno) [popsize,~] = size(f1); cd = zeros(1,popsize); for i = 1:max(frontno) idx = find(frontno == i); [f1_sort,idx_sort] = sort(f1(idx)); f2_sort = f2(idx(idx_sort)); cd(idx(idx_sort(1))) = inf; cd(idx(idx_sort(end))) = inf; for j = 2:length(idx)-1 cd(idx(idx_sort(j))) = cd(idx(idx_sort(j))) + (f1_sort(j+1)-f1_sort(j-1))/(f1_sort(end)-f1_sort(1)); end end end %% 二元锦标赛选择 function [parent1,parent2] = binary_tournament_selection(popsize,fit) parent1_idx = randperm(popsize,2); parent2_idx = randperm(popsize,2); if fit(parent1_idx(1)) >= fit(parent1_idx(2)) parent1 = parent1_idx(1); else parent1 = parent1_idx(2); end if fit(parent2_idx(1)) >= fit(parent2_idx(2)) parent2 = parent2_idx(1); else parent2 = parent2_idx(2); end end %% 模拟二进制交叉 function [offspring1,offspring2] = sbx(parent1,parent2,lbound,ubound) dim = length(lbound); beta = 1.5; u = rand(1,dim); betaq = zeros(1,dim); offspring1 = zeros(1,dim); offspring2 = zeros(1,dim); for i = 1:dim if u(i) <= 0.5 betaq(i) = (2*u(i))^(1/(beta+1)); else betaq(i) = (1/(2*(1-u(i))))^(1/(beta+1)); end offspring1(i) = 0.5*((1+betaq(i))*parent1(i) + (1-betaq(i))*parent2(i)); offspring2(i) = 0.5*((1-betaq(i))*parent1(i) + (1+betaq(i))*parent2(i)); if offspring1(i) < lbound(i) offspring1(i) = lbound(i); elseif offspring1(i) > ubound(i) offspring1(i) = ubound(i); end if offspring2(i) < lbound(i) offspring2(i) = lbound(i); elseif offspring2(i) > ubound(i) offspring2(i) = ubound(i); end end end %% 多项式变异 function offspring = mutation(parent,lbound,ubound) dim = length(lbound); pm = 1/dim; offspring = parent; for i = 1:dim if rand < pm u = rand; if u <= 0.5 delta = (2*u)^(1/(1+20)); else delta = (1/(2*(1-u)))^(1/(1+20)); end offspring(i) = parent(i) + delta*(ubound(i)-lbound(i)); if offspring(i) < lbound(i) offspring(i) = lbound(i); elseif offspring(i) > ubound(i) offspring(i) = ubound(i); end end end end 需要说明的是,这份代码示例只是一个简单的鲸鱼算法实现,并不是完整的建筑综合能源优化调度程序。如果您需要实现一个完整的建筑综合能源优化调度程序,可能需要更多的细节处理和专业知识。
鲸鱼优化算法(WOA)是一种元启发式算法,可以用于解决各种复杂的优化问题,包括连续性优化问题和离散优化问题。在连续性优化问题方面,WOA已经被成功应用于资源调度问题、路径规划和神经网络训练等领域。\[1\]\[2\] 对于TSP问题,也可以使用鲸鱼优化算法进行求解。例如,研究人员已经提出了基于贪婪鲸鱼优化算法(GWOA)的带时间窗的快递末端配送路径模型,通过引入贪婪交换机制来改进算法的收敛速度和局部寻优能力。\[2\] 至于使用MATLAB来实现鲸鱼智能算法解决TSP问题,可以根据具体的问题需求编写相应的MATLAB代码。例如,可以使用循环来尝试不同的参数组合,如距离权重和信息素权重,然后运行鲸鱼优化算法来求解TSP问题。\[3\] 总之,鲸鱼优化算法是一种有效的元启发式算法,可以用于解决各种优化问题,包括TSP问题。使用MATLAB来实现鲸鱼智能算法解决TSP问题需要根据具体情况编写相应的代码。 #### 引用[.reference_title] - *1* *2* [matlab改进鲸鱼算法求解路径优化](https://blog.csdn.net/weixin_46567845/article/details/121277880)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [优化算法 | 蚁群算法(ACO)求解TSP问题(附Python代码)](https://blog.csdn.net/weixin_40730979/article/details/123938684)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
鲸鱼算法是一种模拟鲸鱼集群捕食行为的优化算法,具有全局搜索、性能稳定等优点。而在车辆路径问题中,带时间窗的开放式问题更加复杂,需要考虑时间限制以及车辆的容量等多个约束条件。 基于matlab鲸鱼算法求解带时间窗开放式车辆路径问题,首先需要确定问题的目标函数以及各个约束条件。目标函数可以设定为最小化总路程或最小化总时间等,约束条件包括时间窗、容量、出发点和到达点等。 然后,可以利用matlab编写求解程序,采用鲸鱼算法进行全局搜索。具体来说,可以将路线规划问题转化为一个优化问题,使用遗传算法或粒子群算法等优化算法进行求解,同时考虑各个约束条件。 在程序中,可以使用矩阵存储车辆的容量、位置、时间窗等信息,采用突变、选择、交叉等操作进行遗传变异。在每次迭代中,根据当前种群中每个个体的适应度值对其进行排序,以选择较优的个体进行交叉和变异,从而逐渐优化解决方案。同时,可以设置停止迭代的条件,以保证程序的效率。 最后,需要对求解结果进行评估,并进行可视化展示。评估可以使用各种准则进行,如各辆车的路程、总路程、服务时间等指标。可视化可以使用matlab中的绘图工具进行展示,包括路线图、车辆调度图等。 总之,基于matlab鲸鱼算法求解带时间窗开放式车辆路径问题,需要深刻理解问题本质,熟练掌握编程技能,对算法进行适当优化,并进行评估和可视化。

最新推荐

300126锐奇股份财务报告资产负债利润现金流量表企业治理结构股票交易研发创新等1391个指标(2007-2022).xlsx

包含1391个指标,其说明文档参考: https://blog.csdn.net/yushibing717/article/details/136115027 数据来源:基于上市公司公告数据整理 数据期间:从具体上市公司上市那一年开始-2022年度的数据,年度数据 包含各上市公司股票的、多年度的上市公司财务报表资产负债表、上市公司财务报表利润表、上市公司财务报表现金流量表间接法、直接法四表合在一个面板里面,方便比较和分析利用 含各个上市公司股票的、多年度的 偿债能力 披露财务指标 比率结构 经营能力 盈利能力 现金流量分析 风险水平 发展能力 每股指标 相对价值指标 股利分配 11类财务指标分析数据合在一个面板里面,方便比较和分析利用 含上市公司公告的公司治理、股权结构、审计、诉讼等数据 包含1391个指标,如: 股票简称 证券ID 注册具体地址 公司办公地址 办公地址邮政编码 董事会秘书 董秘联系电话 董秘传真 董秘电子邮箱 ..... 货币资金 其中:客户资金存款 结算备付金 其中:客户备付金 .........

【路径规划】基于matlab原子搜索算法栅格地图机器人最短路径规划【含Matlab源码 2887期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

【语音隐写】基于matlab DCT扩频语音水印【含Matlab源码 466期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

C#课程设计 扫雷游戏.zip

C#课程设计 扫雷游戏

Webs.zip(winXP到Win11的背景)

WinXP到win11的背景 由于时间不足,部分未找到,敬请谅解!

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx