arima模型残差检验python代码
时间: 2023-09-11 22:04:20 浏览: 291
ARIMA模型的残差检验通常包括以下几个步骤:
1. 绘制残差图:如果残差是随机分布的,那么残差图应该是一个均匀的随机分布;否则,就需要进一步检查。
2. 残差的自相关函数(ACF)和偏自相关函数(PACF):如果残差的ACF和PACF都不显著,那么我们可以认为残差是随机的。
3. Ljung-Box检验:如果Ljung-Box检验的p值接近1,那么我们可以认为残差是随机的。
下面是ARIMA模型残差检验的Python代码示例:
```python
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
# 导入数据
data = pd.read_csv('data.csv', header=None, names=['value'])
# 拟合ARIMA模型
model = sm.tsa.ARIMA(data, order=(1, 1, 1)).fit()
# 残差分析
resid = model.resid
fig, ax = plt.subplots(2, 2)
ax[0, 0].plot(resid)
ax[0, 0].set_title('Residual Plot')
sm.graphics.tsa.plot_acf(resid, ax=ax[0, 1])
sm.graphics.tsa.plot_pacf(resid, ax=ax[1, 0])
sm.stats.diagnostic.acorr_ljungbox(resid, lags=[10], boxpierce=False)
plt.show()
```
其中,`data.csv`是一个包含时间序列数据的CSV文件。在代码中,我们首先拟合了一个ARIMA模型,然后绘制了残差图、残差的ACF和PACF图以及进行了Ljung-Box检验。如果残差是随机分布的,那么我们可以认为ARIMA模型的拟合效果很好。
阅读全文