基于遗传算法的ostu阈值分割matlab代码
时间: 2023-08-02 22:20:21 浏览: 163
这是一个基于遗传算法的Otsu阈值分割的Matlab代码示例:
```matlab
clc;
clear all;
close all;
% 读取图像
img = imread('lena512.bmp');
img = rgb2gray(img);
% 初始化遗传算法参数
popSize = 50;
numOfBits = 8;
numOfGenes = 1;
numOfIterations = 50;
% 像素值归一化到 [0,1] 区间
img = double(img) / 255;
% 计算直方图
histogram = histcounts(img, numOfBits) / numel(img);
% 初始化种群
population = zeros(popSize, numOfGenes);
for i = 1:popSize
population(i,:) = randi([0, 2^numOfBits-1], [1, numOfGenes]);
end
% 迭代遗传算法
for iteration = 1:numOfIterations
% 计算适应度函数
fitness = zeros(popSize, 1);
for i = 1:popSize
threshold = population(i) / (2^numOfBits-1);
foreground = img > threshold;
background = img <= threshold;
histogramForeground = histcounts(img(foreground), numOfBits) / sum(foreground(:));
histogramBackground = histcounts(img(background), numOfBits) / sum(background(:));
varianceWithinClass = sum((histogramForeground-mean(histogramForeground)).^2) + sum((histogramBackground-mean(histogramBackground)).^2);
fitness(i) = varianceWithinClass;
end
% 选择操作
[sortedFitness, indices] = sort(fitness);
population = population(indices(1:popSize),:);
% 交叉操作
for i = 2:popSize
if rand() < 0.8
parent1 = population(i-1,:);
parent2 = population(i,:);
crossoverPoint = randi([1, numOfGenes-1]);
child1 = [parent1(1:crossoverPoint), parent2(crossoverPoint+1:end)];
child2 = [parent2(1:crossoverPoint), parent1(crossoverPoint+1:end)];
population(i-1,:) = child1;
population(i,:) = child2;
end
end
% 变异操作
for i = 1:popSize
if rand() < 0.1
gene = randi([0, 2^numOfBits-1], [1, numOfGenes]);
population(i,:) = gene;
end
end
end
% 计算最优解
bestThreshold = population(1) / (2^numOfBits-1);
% 分割图像
foreground = img > bestThreshold;
background = img <= bestThreshold;
% 显示结果
figure();
subplot(1, 3, 1);
imshow(img);
title('原始图像');
subplot(1, 3, 2);
imshow(foreground);
title('前景');
subplot(1, 3, 3);
imshow(background);
title('背景');
```
这段代码首先读取一张灰度图像,将像素值归一化到 [0,1] 区间,计算直方图,并初始化遗传算法参数和种群。然后迭代遗传算法,计算每个个体的适应度函数,选择、交叉和变异操作,最终得到最优解作为阈值进行图像分割,显示分割结果。
阅读全文