用C语言完整定义四叉树
时间: 2023-03-13 20:36:04 浏览: 241
四叉树是一种树结构,它将每个结点分成四个子结点,每个子结点可以有0个或多个子节点。用C语言完整定义四叉树,可以这样:struct node
{
int data;
struct node *nw;
struct node *ne;
struct node *sw;
struct node *se;
};
相关问题
四叉树用C语言怎么完整定义
四叉树是一种数据结构,它用来存储嵌套的二维空间结构,因此是一种可以高效搜索的结构。使用C语言定义四叉树可以通过定义一个结构体和一些函数来实现。结构体用来存储四叉树的每个节点,包括节点的坐标、附加信息以及指向四个孩子节点的指针。函数用来创建、查找、更新和删除四叉树中的节点。
基于四叉树,实现最近邻检测。用C语言实现
以下是一个基于四叉树实现最近邻检测的 C 语言代码示例。
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX_POINTS 10000
#define MAX_DEPTH 10
#define THRESHOLD 10
typedef struct point_t {
double x;
double y;
} point_t;
typedef struct quadtree_node_t {
point_t points[MAX_POINTS];
int count;
double x1, x2, y1, y2;
struct quadtree_node_t *nw, *ne, *sw, *se;
} quadtree_node_t;
double distance(point_t p1, point_t p2) {
double dx = p1.x - p2.x;
double dy = p1.y - p2.y;
return sqrt(dx * dx + dy * dy);
}
void quadtree_insert(quadtree_node_t **node, point_t point, double x1, double x2, double y1, double y2, int depth) {
if (*node == NULL) {
*node = (quadtree_node_t *) malloc(sizeof(quadtree_node_t));
(*node)->count = 0;
(*node)->nw = (*node)->ne = (*node)->sw = (*node)->se = NULL;
(*node)->x1 = x1;
(*node)->x2 = x2;
(*node)->y1 = y1;
(*node)->y2 = y2;
}
if ((*node)->count < MAX_POINTS) {
(*node)->points[(*node)->count++] = point;
} else {
if (depth < MAX_DEPTH) {
double xmid = (x1 + x2) / 2;
double ymid = (y1 + y2) / 2;
if (point.x < xmid && point.y < ymid) {
quadtree_insert(&((*node)->nw), point, x1, xmid, y1, ymid, depth + 1);
} else if (point.x >= xmid && point.y < ymid) {
quadtree_insert(&((*node)->ne), point, xmid, x2, y1, ymid, depth + 1);
} else if (point.x < xmid && point.y >= ymid) {
quadtree_insert(&((*node)->sw), point, x1, xmid, ymid, y2, depth + 1);
} else {
quadtree_insert(&((*node)->se), point, xmid, x2, ymid, y2, depth + 1);
}
} else {
(*node)->points[(*node)->count++] = point;
}
}
}
void quadtree_search(quadtree_node_t *node, point_t query, point_t *nearest, double *mindist) {
if (node == NULL) {
return;
}
for (int i = 0; i < node->count; i++) {
double dist = distance(node->points[i], query);
if (dist < *mindist) {
*mindist = dist;
*nearest = node->points[i];
}
}
double x = query.x, y = query.y;
if (x < node->x1 - *mindist || x > node->x2 + *mindist || y < node->y1 - *mindist || y > node->y2 + *mindist) {
return;
}
if (node->nw == NULL && node->ne == NULL && node->sw == NULL && node->se == NULL) {
return;
}
if (node->nw != NULL) {
quadtree_search(node->nw, query, nearest, mindist);
}
if (node->ne != NULL) {
quadtree_search(node->ne, query, nearest, mindist);
}
if (node->sw != NULL) {
quadtree_search(node->sw, query, nearest, mindist);
}
if (node->se != NULL) {
quadtree_search(node->se, query, nearest, mindist);
}
}
int main() {
quadtree_node_t *root = NULL;
point_t points[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
int n = sizeof(points) / sizeof(points[0]);
for (int i = 0; i < n; i++) {
quadtree_insert(&root, points[i], 0, 10, 0, 10, 0);
}
point_t query = {4, 5};
point_t nearest = {0, 0};
double mindist = INFINITY;
quadtree_search(root, query, &nearest, &mindist);
printf("Nearest point: (%.2lf, %.2lf), distance: %.2lf\n", nearest.x, nearest.y, mindist);
return 0;
}
```
在上面的代码中,`quadtree_insert()` 函数用于在四叉树中插入新的点,`quadtree_search()` 函数用于查找离查询点最近的点。其中,`distance()` 函数用于计算两个点之间的距离。
在 `main()` 函数中,首先创建了一些测试用的点,并插入到四叉树中。然后,定义一个查询点,并调用 `quadtree_search()` 函数查找离查询点最近的点,并输出结果。
这个代码示例可以在本地编译运行,需要注意的是,本示例中的四叉树实现并不是最优的,仅用于演示。在实际应用中,可能需要对四叉树的插入和查询算法进行优化。
阅读全文