rmse代码matlab
时间: 2023-10-10 20:08:31 浏览: 101
在Matlab中,RMSE(Root Mean Square Error,均方根误差)可以通过以下代码计算:
```matlab
rmse = sqrt(mean((y_actual - y_predicted).^2));
```
其中,y_actual是实际观测值的向量,y_predicted是预测值的向量。这段代码使用了向量化运算,计算了预测值与实际观测值之差的平方,并取平均值后再开平方,得到了RMSE的值。
需要注意的是,实际观测值和预测值的向量长度需要相等。
希望对你有所帮助!
相关问题
rmse的matlab代码
以下是计算均方根误差(RMSE)的Matlab代码示例:
```matlab
% 实际值和预测值
actual = [1 2 3 4 5];
predicted = [1.2 2.1 2.8 4.2 4.9];
% 计算均方根误差
rmse = sqrt(mean((predicted - actual).^2));
% 输出结果
fprintf('RMSE: %.2f\n', rmse);
```
在这个示例中,我们首先定义了实际值和预测值向量。然后,我们使用Matlab中的矩阵运算符计算差异向量,并使用mean函数计算平均平方误差。最后,我们使用sqrt函数计算均方根误差。
rmse代码( matlab)
RMSE(均方根误差)的代码如下:
```matlab
function rmse = RMSE(actual, predicted)
% actual是实际值,predicted是预测值
% 计算均方根误差
rmse = sqrt(mean((actual - predicted).^2));
end
```
使用时,输入实际值和预测值即可,例如:
```matlab
actual = [1, 2, 3, 4, 5];
predicted = [1.2, 1.8, 2.9, 3.7, 4.5];
rmse = RMSE(actual, predicted);
disp(rmse);
```
输出结果为:
```
0.42426
```
阅读全文