使用Python实现SIFT-RANSAC算法
时间: 2023-12-30 12:01:54 浏览: 140
SIFT+RANSAC
SIFT-RANSAC算法是一种图像配准算法,可以用于在两幅图像中找到相同区域。下面是使用Python实现SIFT-RANSAC算法的步骤:
1.导入必要的库
```python
import cv2
import numpy as np
from scipy.spatial import distance
from collections import Counter
```
2.加载图像
```python
img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)
```
3.提取SIFT特征
```python
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
```
4.特征匹配
```python
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
```
5.筛选好的匹配点
```python
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good.append(m)
```
6.使用RANSAC算法进行配准
```python
MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
matchesMask = mask.ravel().tolist()
else:
print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
matchesMask = None
```
7.计算匹配点的正确率
```python
if matchesMask is not None:
distances = []
for i in range(len(good)):
if matchesMask[i] == 1:
pt1 = src_pts[i][0]
pt2 = dst_pts[i][0]
distances.append(distance.euclidean(pt1, pt2))
correct_ratio = Counter(distances).most_common()[0][1] / len(distances)
print("Correct Ratio: {:.2f}%".format(correct_ratio * 100))
```
以上是使用Python实现SIFT-RANSAC算法的步骤,其中RANSAC算法可以有效地筛选出正确的匹配点,提高匹配的准确率。
阅读全文