OpenMV怎么在图像上用红色绘制车位线 img.draw_line(line.line(), color = (255, 0, 0))
时间: 2024-03-22 12:42:03 浏览: 111
首先,你需要导入OpenMV的库文件和图像传感器模块:
```
import sensor
import image
import time
```
然后,你需要设置图像传感器的分辨率和帧率:
```
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_vflip(True)
sensor.set_hmirror(True)
sensor.set_auto_gain(False)
sensor.set_auto_whitebal(False)
sensor.skip_frames(time = 2000)
```
接下来,你需要从图像传感器读取图像并将其转换为RGB格式:
```
img = sensor.snapshot()
img = img.to_rgb565()
```
最后,你可以使用 `draw_line()` 函数在图像上绘制红色车位线:
```
img.draw_line(line.line(), color = (255, 0, 0))
```
其中,`line.line()` 表示车位线的位置,`(255, 0, 0)` 表示红色的RGB颜色值。
注意:在绘制车位线之前,你需要使用OpenMV的图像处理技术来检测车位线的位置。
相关问题
for b in blob: #img.draw_rectangle(b.rect(), color = (250,0,0))#画红色矩形 img.draw_edges(b.min_corners(), color=(0,255,0))#蓝色,绘制边缘线 img.draw_cross(b.cx(),b.cy(),color=(0,255,0))#以圆心画十字 #print("Dia
这段代码是用于处理图像中的目标物体,具体来说,它会对每一个检测到的物体进行以下操作:
1. 画一个红色的矩形框出该物体的位置和大小。
2. 用蓝色绘制该物体的边缘线。
3. 以物体中心为中心,在图像上画一个十字符号。
同时,这段代码中注释掉了一个画红色矩形的语句,如果需要的话可以取消注释来显示红色矩形。
# Single Color Code Tracking Example # # This example shows off single color code tracking using the CanMV Cam. # # A color code is a blob composed of two or more colors. The example below will # only track colored objects which have both the colors below in them. import sensor, image, time, math # Color Tracking Thresholds (L Min, L Max, A Min, A Max, B Min, B Max) # The below thresholds track in general red/green things. You may wish to tune them... thresholds = [(30, 100, 15, 127, 15, 127), # generic_red_thresholds -> index is 0 so code == (1 << 0) (30, 100, -64, -8, -32, 32)] # generic_green_thresholds -> index is 1 so code == (1 << 1) # Codes are or'ed together when "merge=True" for "find_blobs". sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 2000) sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking clock = time.clock() # Only blobs that with more pixels than "pixel_threshold" and more area than "area_threshold" are # returned by "find_blobs" below. Change "pixels_threshold" and "area_threshold" if you change the # camera resolution. "merge=True" must be set to merge overlapping color blobs for color codes. while(True): clock.tick() img = sensor.snapshot() for blob in img.find_blobs(thresholds, pixels_threshold=100, area_threshold=100, merge=True): if blob.code() == 3: # r/g code == (1 << 1) | (1 << 0) # These values depend on the blob not being circular - otherwise they will be shaky. # if blob.elongation() > 0.5: # img.draw_edges(blob.min_corners(), color=(255,0,0)) # img.draw_line(blob.major_axis_line(), color=(0,255,0)) # img.draw_line(blob.minor_axis_line(), color=(0,0,255)) # These values are stable all the time. img.draw_rectangle(blob.rect()) img.draw_cross(blob.cx(), blob.cy()) # Note - the blob rotation is unique to 0-180 only. img.draw_keypoints([(blob.cx(), blob.cy(), int(math.degrees(blob.rotation())))], size=20) print(clock.fps())
这段代码是一个单色码跟踪的示例,使用了CanMV Cam进行跟踪。它会跟踪具有下列颜色的物体:
1. 红色:亮度范围在30到100之间,A通道范围在15到127之间,B通道范围在15到127之间。
2. 绿色:亮度范围在30到100之间,A通道范围在-64到-8之间,B通道范围在-32到32之间。
代码中使用了图像传感器来捕获图像,并进行颜色跟踪。通过设置阈值来确定跟踪颜色的范围。然后,使用`find_blobs`函数找到符合阈值要求的颜色块,并绘制出来。最后,打印出每秒处理的帧数。
请注意,这段代码中的阈值是一些通用的阈值,你可能需要根据实际情况进行调整。
阅读全文