ns3/vector.h

时间: 2023-10-01 19:12:21 浏览: 42
ns3/vector.h 是 ns-3 网络仿真器中的头文件之一,定义了 Vector 类型和 Vector3D 类型。这些类型被广泛用于 ns-3 中各种对象的位置、速度、加速度等数据的表示。Vector 类型表示在二维平面上的向量,包含 x 和 y 两个分量;Vector3D 类型则表示在三维空间中的向量,包含 x、y 和 z 三个分量。这些类型支持各种向量运算,如加减、点乘、叉乘等。在 ns-3 中,常常需要使用 Vector 和 Vector3D 来描述节点位置、速度、加速度等信息,因此这些类型是 ns-3 中非常重要的基础类型之一。
相关问题

ns3 aodv interface编写

To develop an AODV interface using ns3, you can follow the steps given below: 1. Create a new C++ file and include the necessary header files for ns3 and AODV. For example: ```c++ #include "ns3/aodv-module.h" #include "ns3/core-module.h" #include "ns3/network-module.h" #include "ns3/mobility-module.h" #include "ns3/internet-module.h" ``` 2. Define the main function and create the ns3 simulation environment: ```c++ int main(int argc, char* argv[]) { // Create the ns3 simulation environment ns3::CommandLine cmd; cmd.Parse(argc, argv); ns3::NodeContainer nodes; nodes.Create(2); ns3::InternetStackHelper internet; internet.Install(nodes); ns3::AodvHelper aodv; ns3::Ipv4ListRoutingHelper list; list.Add(aodv, 100); internet.SetRoutingHelper(list); ns3::Ipv4AddressHelper address; address.SetBase("10.1.1.0", "255.255.255.0"); ns3::NetDeviceContainer devices; devices = internet.Install(ns3::NodeContainer.Get(0), ns3::NodeContainer.Get(1), address); // Define the mobility model and move the nodes // ... // Define the applications and start the simulation // ... ns3::Simulator::Stop(ns3::Seconds(10.0)); ns3::Simulator::Run(); ns3::Simulator::Destroy(); return 0; } ``` This code creates a simulation environment with two nodes, installs the AODV routing protocol on the nodes, and sets up an IP address for the network interface between the nodes. 3. Define the mobility model for the nodes and move them around the simulation environment. For example: ```c++ ns3::MobilityHelper mobility; mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel"); mobility.Install(nodes); ns3::Ptr<ns3::ConstantPositionMobilityModel> pos0 = nodes.Get(0)->GetObject<ns3::ConstantPositionMobilityModel>(); ns3::Ptr<ns3::ConstantPositionMobilityModel> pos1 = nodes.Get(1)->GetObject<ns3::ConstantPositionMobilityModel>(); pos0->SetPosition(ns3::Vector(0.0, 0.0, 0.0)); pos1->SetPosition(ns3::Vector(100.0, 0.0, 0.0)); ``` This code sets up a constant position mobility model for the nodes and moves them to the specified positions. 4. Define the applications that will be used to send data between the nodes. For example: ```c++ ns3::PacketSinkHelper sinkHelper("ns3::UdpSocketFactory", ns3::InetSocketAddress(ns3::Ipv4Address::GetAny(), 9)); ns3::ApplicationContainer sinkApps = sinkHelper.Install(nodes.Get(1)); sinkApps.Start(ns3::Seconds(0.0)); sinkApps.Stop(ns3::Seconds(10.0)); ns3::OnOffHelper onoff("ns3::UdpSocketFactory", ns3::InetSocketAddress(nodes.Get(1)->GetObject<ns3::Ipv4>()->GetAddress(1, 0).GetLocal(), 9)); onoff.SetAttribute("OnTime", ns3::StringValue("ns3::ConstantRandomVariable[Constant=1]")); onoff.SetAttribute("OffTime", ns3::StringValue("ns3::ConstantRandomVariable[Constant=0]")); onoff.SetAttribute("DataRate", ns3::StringValue("5Mbps")); onoff.SetAttribute("PacketSize", ns3::UintegerValue(1500)); ns3::ApplicationContainer onoffApps = onoff.Install(nodes.Get(0)); onoffApps.Start(ns3::Seconds(1.0)); onoffApps.Stop(ns3::Seconds(10.0)); ``` This code sets up a packet sink application on the second node to receive data, and an on-off application on the first node to send data to the second node. 5. Start the ns3 simulation and run it for a period of time: ```c++ ns3::Simulator::Stop(ns3::Seconds(10.0)); ns3::Simulator::Run(); ns3::Simulator::Destroy(); ``` This code starts the simulation, runs it for 10 seconds, and then destroys it. With these steps, you can develop an AODV interface using ns3 and simulate data transmission between nodes.

#include <ros/ros.h> #include "Utils/param.h" #include "control.hpp" #include <sstream> namespace ns_control { Param control_param_; Control::Control(ros::NodeHandle &nh) : nh_(nh) { controller_ = nh_.param<std::string>("controller", "pure_pursuit"); control_param_.getParams(nh_, controller_); if (controller_ == "pure_pursuit") { solver_ = &pure_pursuit_solver_; } else if (controller_ == "mpc") { solver_ = &mpc_solver_; } else { ROS_ERROR("Undefined Solver name !"); } } void Control::setCarState(const fsd_common_msgs::CarState &msgs) { car_state_ = msgs; } void Control::setTrack(const Trajectory &msgs) { refline_ = msgs; } fsd_common_msgs::ControlCommand Control::getCmd() { return cmd_; } visualization_msgs::MarkerArray Control::getPrePath() { return PrePath_; } bool Control::Check() { if (refline_.empty()) { ROS_DEBUG_STREAM("Successfully passing check"); return false; } return true; } void Control::runAlgorithm() { if (!Check()) { ROS_WARN_STREAM("Check Error"); return; } solver_->setState(VehicleState(car_state_, cmd_)); solver_->setTrajectory(refline_); solver_->solve(); cmd_ = solver_->getCmd(); std::vector<float> color_ref = {1, 0, 0}; std::vector<float> color_pre = {0, 1, 0}; std::vector<float> color_init = {0, 0, 1}; if (controller_ == "mpc") visual_trajectory(solver_->getTrajectory(), PrePath_, "/base_link", color_pre, car_state_.header, true); std::cout << "steering: " << cmd_.steering_angle.data << std::endl; std::cout << "throttle: " << cmd_.throttle.data << std::endl; }翻译这段代码

这是一个控制程序的C++代码。首先引入了ROS的头文件和一些其他的头文件,包括Param.h和control.hpp。然后定义了一个命名空间ns_control。 在命名空间ns_control中,定义了一个结构体Param和一个类Control。Param结构体用于存储控制参数,Control类用于执行控制算法。 在Control类中,首先初始化了一个控制器名称controller_,并根据控制器名称获取控制参数。如果控制器名称为"pure_pursuit",则使用纯追踪控制器;如果为"mpc",则使用模型预测控制器;否则输出错误信息。然后定义了一个车辆状态car_state_和一个参考轨迹refline_,并实现了一些函数,包括设置车辆状态、设置参考轨迹、获取控制指令、获取预瞄路径等。 在runAlgorithm函数中,首先检查参考轨迹是否为空,如果为空则输出警告信息并返回。然后设置控制器的状态和参考轨迹,求解控制指令,更新车辆状态等。如果控制器为模型预测控制器,则获取预瞄路径并进行可视化。最后输出控制指令的转向角和油门值。 总体来说,这段代码实现了一个控制器,可以根据车辆状态和参考轨迹计算出相应的控制指令。

相关推荐

#include <Winsock2.h> #include <Windows.h> #include <iostream> #include <fstream> #include <string> #include <sstream> #include <vector> #include <map> #pragma comment(lib, "ws2_32.lib") std::map<std::string, std::string> readIniFile(std::string fileName) { std::map<std::string, std::string> configMap; std::ifstream file(fileName); if (file.is_open()) { std::string line; std::string section = ""; while (getline(file, line)) { if (line.empty()) { continue; } if (line[0] == '[' && line[line.length() - 1] == ']') { section = line.substr(1, line.length() - 2); } else { std::stringstream ss(line); std::string key, value; getline(ss, key, '='); getline(ss, value); configMap[section + "." + key] = value; } } file.close(); } return configMap; } void writeLogFile(std::string fileName, std::string logText) { std::ofstream file(fileName, std::ios_base::app); if (file.is_open()) { file << logText << std::endl; file.close(); } } int main() { std::map<std::string, std::string> config = readIniFile("config.ini"); int bluetoothCount = std::stoi(config["bluetooth.count"]); std::string logFileName = config["log.filename"]; WSADATA wsaData; int iResult = WSAStartup(MAKEWORD(2, 2), &wsaData); if (iResult != 0) { std::cout << "WSAStartup failed: " << iResult << std::endl; return 1; } WSAQUERYSET service; memset(&service, 0, sizeof(service)); service.dwSize = sizeof(service); service.dwNameSpace = NS_BTH; HANDLE lookupHandle = NULL; iResult = WSALookupServiceBegin(&service, LUP_CONTAINERS, &lookupHandle); if (iResult != 0) { std::cout << "WSALookupServiceBegin failed: " << iResult << std::endl; WSACleanup(); return 1; } int count = 0; WSAQUERYSET* pResult = (WSAQUERYSET*)LocalAlloc(LPTR, sizeof(WSAQUERYSET)); while (count < bluetoothCount) { DWORD dwSize = sizeof(WSAQUERYSET); iResult = WSALookupServiceNext(lookupHandle, LUP_RETURN_NAME | LUP_RETURN_ADDR, &dwSize, pResult); if (iResult != 0) { break; } count++; } LocalFree(pResult); WSALookupServiceEnd(lookupHandle); WSACleanup(); if (count >= bluetoothCount) { std::string logText = "Bluetooth count is " + std::to_string(count) + ", reached the target count of " + std::to_string(bluetoothCount); writeLogFile(logFileName, logText); } else { std::string logText = "Bluetooth count is " + std::to_string(count) + ", did not reach the target count of " + std::to_string(bluetoothCount); writeLogFile(logFileName, logText); } return 0; } 给这段代码搜索蓝牙设备加上搜索时间

最新推荐

recommend-type

c语言开发图书管理系统项目源码+数据+可运行程序

c语言开发图书管理系统项目源码+数据+可运行程序 主要功能有:1、以管理员或读者不同身份注册账户。2、登录、找回密码、修改密码。3、管理员:图书入库,清除库存,统计书籍数量,统计读者借书情况,在馆书籍排序,读者排序。4、读者:查看个人借阅信息,借书,还书,按书名、作者、出版社检索图书,查询全部在馆图书。
recommend-type

基于transformer的多模态脑肿瘤分割.zip

本项目旨在利用Transformer模型实现多模态脑肿瘤分割。多模态脑肿瘤分割对于脑肿瘤的诊断和治疗具有重要意义。 我们采用Transformer模型,通过分析脑部MRI、CT、PET等不同模态的医学影像数据,实现对脑肿瘤区域的自动分割。项目使用的数据集包括公开的脑肿瘤影像数据集,如BRATS、Medical Segmentation Decathlon等,并进行了预处理,包括图像增强、分割和特征提取等。 在运行环境方面,我们使用Python编程语言,基于TensorFlow、PyTorch等深度学习框架进行开发。为了提高计算效率,我们还使用了GPU加速计算。此外,我们还采用了Docker容器技术,确保实验结果的可重复性。 项目完成后,将实现对多模态脑肿瘤的快速、准确分割,为脑肿瘤的诊断和治疗提供有力支持。同时,项目成果也可应用于其他医学影像分析领域。
recommend-type

马尔文高浓度池说明书 High Concentration Cell (ZEN1010)

马尔文高浓度池说明书 High Concentration Cell (ZEN1010)
recommend-type

如何提高APP商业变现能力.docx

如何提高APP商业变现能力.docx
recommend-type

node-v12.20.0-darwin-x64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:安装成功验证技巧

![Redis从入门到精通](https://img-blog.csdnimg.cn/6f39d0a2adc3456b96e804eb45032480.png) # 1. Redis安装与验证** ### 2.2 Redis验证方法 Redis验证可以通过以下方法进行: - **命令行验证:** - 打开终端,输入 `redis-cli` 命令进入 Redis 命令行。 - 输入 `ping` 命令,如果返回 "PONG",则表示 Redis 正在运行。 - **客户端验证:** - 使用 Redis 客户端(如 RedisInsight)连接到 Redis 服务器。
recommend-type

3、自定义一个函数int compareStr(char *p1, char *p2),实现两个字符串的比较。相等返回0,大于返回1,小于返回0;编写主函数main()来调用自定义函数完成测试。

下面是自定义的 `compareStr` 函数的代码实现: ```c #include <stdio.h> int compareStr(char *p1, char *p2) { while (*p1 && *p2 && (*p1 == *p2)) { p1++; p2++; } return (*p1 > *p2) - (*p1 < *p2); } int main() { char str1[100], str2[100]; int result; printf("请输入第一个字符串:");
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。