python evaluate.py eval_fire.yml -e train_fire -ml train_fire代码解释
时间: 2024-04-21 10:24:18 浏览: 173
这段代码是在命令行中运行的,它使用 `evaluate.py` 这个 Python 脚本来评估一个使用 `eval_fire.yml` 配置文件中的参数的模型。参数 `-e` 指定了评估的环境,它告诉脚本使用名为 `train_fire` 的环境。参数 `-ml` 指定了被评估的模型,它告诉脚本使用名为 `train_fire` 的模型。
在该脚本,可能会包含有关评估数据的路径、模型参数设置、评估过程中的指标计算等信息。具体的代码解释可能需要查看 `evaluate.py` 脚本的实现。
相关问题
Traceback (most recent call last): File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\run.py", line 37, in <module> train_ner() File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\run.py", line 33, in train_ner train(args=args) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\bert_base\train\bert_lstm_ner.py", line 626, in train tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 473, in train_and_evaluate return executor.run() File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 613, in run return self.run_local() File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 714, in run_local saving_listeners=saving_listeners) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 370, in train loss = self._train_model(input_fn, hooks, saving_listeners) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1161, in _train_model return self._train_model_default(input_fn, hooks, saving_listeners) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1191, in _train_model_default features, labels, ModeKeys.TRAIN, self.config) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1149, in _call_model_fn model_fn_results = self._model_fn(features=features, **kwargs) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\bert_base\train\bert_lstm_ner.py", line 405, in model_fn total_loss, learning_rate, num_train_steps, num_warmup_steps, False) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\bert_base\bert\optimization.py", line 65, in create_optimizer exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) TypeError: Can't instantiate abstract class AdamWeightDecayOptimizer with abstract methods get_config 进程已结束,退出代码1
从错误信息看,这个问题与创建优化器时涉及到抽象类 AdamWeightDecayOptimizer 的实例化有关。前面提到过,这个类是一个抽象基类,不能直接实例化。
在这个具体的问题中,可能是你的代码中对于 AdamWeightDecayOptimizer 的使用方式不正确,导致无法实例化该类。你需要检查代码中创建优化器的部分,确保使用的是具体的子类,如 Adam、AdamW 等。
此外,还需要确认你是否导入了正确的模块,并且使用了合适的子类来实例化优化器对象。
如果问题仍然存在,请提供更多的代码和上下文信息,以便我能够更好地帮助你解决问题。
-- Process 0 terminated with the following error: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/torch/multiprocessing/spawn.py", line 69, in _wrap fn(i, *args) File "/content/vits/train.py", line 123, in run train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval]) File "/content/vits/train.py", line 143, in train_and_evaluate for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(train_loader): File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py", line 435, in __iter__ return self._get_iterator() File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py", line 381, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py", line 988, in __init__ super(_MultiProcessingDataLoaderIter, self).__init__(loader) File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py", line 598, in __init__ self._sampler_iter = iter(self._index_sampler) File "/content/vits/data_utils.py", line 358, in __iter__ ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)] ZeroDivisionError: integer division or modulo by zero怎么修改
这个错误通常是由于使用空列表或零长度的列表进行操作而引起的。在这个错误中,似乎是你使用了一个长度为零的列表或者没有为len_bucket赋值导致的。你需要检查代码中的列表定义以及len_bucket的值是否正确,尝试避免使用空列表或者长度为零的列表进行操作。
具体来说,你需要检查train.py文件中第143行的代码,看看ids_bucket和len_bucket是如何被定义和使用的。同时,你可以检查你的数据加载器,看看是否存在长度为零的数据集,或者其他相关的问题。
如果你确认了问题是由于长度为零的列表引起的,可以在代码中添加一些额外的检查和保护措施,例如检查列表长度是否为零,或者使用try/except语句来捕获ZeroDivisionError异常并进行处理。
阅读全文