基于pytorch,帮我编写一个生成时序数据的GAN模型,噪声用正态分布的噪声,真实数据为xlsx文件里的每行时序数据,并帮我每行都标上注释
时间: 2024-03-23 07:42:24 浏览: 64
好的,我会尽力帮您解决问题。首先,需要安装以下库:pytorch、pandas、numpy、matplotlib、xlrd。
下面是代码实现,注释已经标好,您可以根据需求进行修改:
```python
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import xlrd
# 定义生成器
class Generator(nn.Module):
def __init__(self, input_size, output_size, hidden_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义判别器
class Discriminator(nn.Module):
def __init__(self, input_size, hidden_size):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, 1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x
# 定义训练函数
def train(num_epochs, d_steps, g_steps, batch_size, lr, input_size, hidden_size, output_size, real_data):
# 初始化生成器和判别器
G = Generator(input_size, output_size, hidden_size)
D = Discriminator(output_size, hidden_size)
# 定义损失函数和优化器
criterion = nn.BCELoss()
d_optimizer = torch.optim.Adam(D.parameters(), lr=lr)
g_optimizer = torch.optim.Adam(G.parameters(), lr=lr)
# 用来保存生成器生成的数据
generated_data = []
# 训练
for epoch in range(num_epochs):
for i in range(d_steps):
# 训练判别器
D.zero_grad()
# 生成真实数据
real_batch = real_data[np.random.randint(0, len(real_data), size=batch_size)]
real_batch = torch.tensor(real_batch, dtype=torch.float32)
# 生成生成器生成的数据
noise = torch.randn(batch_size, input_size)
fake_batch = G(noise)
# 计算判别器对真实数据和生成数据的预测结果
real_prediction = D(real_batch)
fake_prediction = D(fake_batch.detach())
# 计算判别器的损失
d_loss = criterion(real_prediction, torch.ones_like(real_prediction)) + \
criterion(fake_prediction, torch.zeros_like(fake_prediction))
# 反向传播和优化
d_loss.backward()
d_optimizer.step()
for i in range(g_steps):
# 训练生成器
G.zero_grad()
# 生成生成器生成的数据
noise = torch.randn(batch_size, input_size)
fake_batch = G(noise)
# 计算判别器对生成数据的预测结果
fake_prediction = D(fake_batch)
# 计算生成器的损失
g_loss = criterion(fake_prediction, torch.ones_like(fake_prediction))
# 反向传播和优化
g_loss.backward()
g_optimizer.step()
# 每个epoch结束后保存生成器生成的数据
noise = torch.randn(len(real_data), input_size)
generated_batch = G(noise)
generated_data.append(generated_batch.detach().numpy())
return generated_data
# 读取xlsx文件
data = pd.read_excel('data.xlsx', header=None)
real_data = data.values
# 设置参数
num_epochs = 500
d_steps = 1
g_steps = 1
batch_size = 32
lr = 0.0002
input_size = 100
hidden_size = 128
output_size = len(real_data[0])
# 训练模型
generated_data = train(num_epochs, d_steps, g_steps, batch_size, lr, input_size, hidden_size, output_size, real_data)
# 绘制生成器生成的数据和真实数据的对比图
fig, axs = plt.subplots(nrows=2, ncols=1, figsize=(10, 10))
axs[0].plot(real_data[0], label='Real Data')
axs[0].plot(generated_data[-1][0], label='Generated Data')
axs[0].set_title('First Row of Data')
axs[0].legend()
axs[1].plot(real_data[1], label='Real Data')
axs[1].plot(generated_data[-1][1], label='Generated Data')
axs[1].set_title('Second Row of Data')
axs[1].legend()
plt.show()
```
注意:这里生成的数据是与真实数据相同长度的数据,如果需要生成不同长度的数据,可以在生成器中添加一些控制长度的参数。
希望能够帮到您!
阅读全文