一只名叫Frog的大蛤蟆正在回家的路上。这条路的长度是N(1<=N<=100),沿途有许多昆虫。假设Frog的原始坐标为0。Frog可以保持静止或向前跳跃T单位,A<=T<=B。无论他呆在哪里,Frog都会吃掉所有的昆虫,但他会的K跳后累了,不能再跳了。给出了路径中每个位置的昆虫数量(始终小于10000)。Frog最多能吃多少昆虫?

时间: 2024-02-26 11:52:30 浏览: 25
这是一道动态规划的题目。我们可以用数组 `dp` 来记录到第 `i` 个位置时,Frog最多能吃多少昆虫,其中 `dp[i]` 表示到第 `i` 个位置时,Frog最多能吃多少昆虫。 转移方程为: ```python dp[i] = max(dp[j] + bugs[i] for j in range(i-k, i-t+1) if j >= 0) ``` 这个方程的意思是,到第 `i` 个位置时,Frog最多能吃多少昆虫等于: - 到前面某个位置 `j` 时,Frog最多能吃多少昆虫,其中 `j` 的范围是从 `i-k` 到 `i-t`,且 `j` 大于等于 0,也就是说,Frog只能从前面的位置跳到当前位置。 - 加上当前位置的昆虫数量 `bugs[i]`。 最终,我们只需要输出 `dp[N-1]` 即可。 完整代码如下: ```python N, A, B, K = map(int, input().split()) bugs = list(map(int, input().split())) dp = [0] * N dp[0] = bugs[0] for i in range(1, N): dp[i] = max(dp[j] + bugs[i] for j in range(i-k, i-t+1) if j >= 0) print(dp[N-1]) ``` 注意,由于Frog的原始坐标为0,因此数组的下标从0开始。
相关问题

C++湖中有n块石头,编号从1到n,有两只青蛙,Bob在1号石头上,Alice在2号石头上,Bob想去看望Alice,但由于水很脏,他想避免游泳,于是跳着去找她。但是Alice的石头超出了他的跳跃范围。因此,Bob使用其他石头作为中间站,通过一系列的小跳跃到达她。两块石头之间的青蛙距离被定义为两块石头之间所有可能路径上的最小必要跳跃距离,某条路径的必要跳跃距离即这条路径中单次跳跃的最远跳跃距离。你的工作是计算Alice和Bob石头之间的青蛙距离。如果他们之间没有石头,答案就是他俩的距离。 Input 多实例输入 先输入一个整数n表示石头数量,当n等于0时结束。 接下来n行依次给出编号为1到n的石头的坐标xi , yi。 2 <= n <= 200 0 <= xi , yi <= 1000 Output 先输出"Scenario #x", x代表样例序号。 接下来一行输出"Frog Distance = y", y代表你得到的答案。 每个样例后输出一个空行。

这是一个典型的最短路径问题,可以使用图论中的Dijkstra算法来解决。下面是一个C++的实现示例: ```cpp #include <iostream> #include <vector> #include <queue> #include <cmath> #include <iomanip> using namespace std; struct Stone { int x, y; }; double frogDistance(const vector<Stone>& stones) { int n = stones.size(); vector<vector<double>> dist(n, vector<double>(n, 0.0)); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == j) { dist[i][j] = 0.0; } else { int dx = stones[i].x - stones[j].x; int dy = stones[i].y - stones[j].y; dist[i][j] = sqrt(dx * dx + dy * dy); } } } vector<double> minDist(n, 1e9); vector<bool> visited(n, false); minDist[0] = 0.0; for (int i = 0; i < n; i++) { int u = -1; for (int j = 0; j < n; j++) { if (!visited[j] && (u == -1 || minDist[j] < minDist[u])) { u = j; } } visited[u] = true; for (int v = 0; v < n; v++) { if (!visited[v] && max(minDist[u], dist[u][v]) < minDist[v]) { minDist[v] = max(minDist[u], dist[u][v]); } } } return minDist[1]; } int main() { int scenario = 1; int n; while (cin >> n && n != 0) { vector<Stone> stones(n); for (int i = 0; i < n; i++) { cin >> stones[i].x >> stones[i].y; } double distance = frogDistance(stones); cout << "Scenario #" << scenario << endl; cout << fixed << setprecision(3) << "Frog Distance = " << distance << endl; cout << endl; scenario++; } return 0; } ``` 这段代码使用了邻接矩阵来表示石头之间的距离,并利用Dijkstra算法计算出最短距离。最后输出答案时使用了 `fixed` 和 `setprecision` 来保留三位小数。

优化这段代码Map<String, Object> map1 = result.get(0);

这段代码定义了一个名为 map1 的 Map 变量,并从 result 列表中获取第一个元素(即 result.get(0)),将这个元素赋值给 map1。 如果想要优化这段代码,可以考虑: 1. 使用 Java 8 的 Stream API,将 for 循环改为 stream.forEach()。 2. 使用并行流,将 stream.forEach() 改为 stream.parallel().forEach(),可以利用多核 CPU 的优势,提升代码的执行效率。 3. 如果要对 map1 进行多次访问,可以考虑将 map1 缓存在局部变量中,避免每次都从 result 列表中取值。 4. 对于 result 列表,如果只需要访问一次,可以考虑使用 Iterator 或者 ListIterator,避免每次都枚举整个列表。 希望这些建议能帮到你!

相关推荐

逐句解释下列代码: %% 蛙跳算法全局参数设置 FROG_NUM=20; % 青蛙种群的个体数目 GROUP_NUM = 4; % 青蛙种群的分组个数 FROG_IN_GROUP = 5; % 组内青蛙个数 MAX_ITERATION_NUM = 1000; % 最大迭代次数 CHARACTER_NUM = length(traind(1,:)); % 初始特征集的总维度 % SUBCHARACTER_NUM = 5; % REPET_NUM = 100; # 重复次数,如果加上这个参数,将停止条件增加为结果重复REPET_NUM停止迭代 tic; %% 蛙跳算法初始化 %---------init------------% for i=1:FROG_NUM a=randperm(CHARACTER_NUM); allfrog(i).pos=a(1:SUBCHARACTER_NUM); allfrog(i).eva=evaluation(traind,label,allfrog(i).pos); end %----------sort-----------% [evatemp,index]=sort([allfrog.eva],'descend'); %% 迭代寻优 count=1; iter=1; eva = []; while iter<MAX_ITERATION_NUM+1 % while count<REPET_NUM %----------group----------% k=1; for j=1:FROG_IN_GROUP for i=1:GROUP_NUM grouped(i,j)=allfrog(index(k)); k=k+1; end end %---------find_max--------% global_max=allfrog(index(1)); for i=1:GROUP_NUM max_in_group(i)=grouped(i,1); min_in_group(i)=grouped(i,FROG_IN_GROUP); end %----------update------------% for i=1:GROUP_NUM frogtemp=min_in_group(i); frogtemp.pos=updated(frogtemp.pos,max_in_group(i).pos); frogtemp.eva=evaluation(traind,label,frogtemp.pos); if frogtemp.eva>min_in_group(i).eva grouped(i,FROG_IN_GROUP)=frogtemp; else frogtemp=min_in_group(i); frogtemp.pos=updated(frogtemp.pos,global_max.pos); frogtemp.eva=evaluation(traind,label,frogtemp.pos); if frogtemp.eva>min_in_group(i).eva grouped(i,FROG_IN_GROUP)=frogtemp; else a=randperm(CHARACTER_NUM); frogtemp.pos=a(1:SUBCHARACTER_NUM); frogtemp.eva=evaluation(traind,label,frogtemp.pos); grouped(i,FROG_IN_GROUP)=frogtemp; end end end %--------------混洗---------------% k=1; for i=1:FROG_IN_GROUP for j=1:GROUP_NUM allfrog(k)=grouped(j,i); k=k+1; end end eva = [eva global_max.eva]; iter=iter+1; [evatemp,index]=sort([allfrog.eva],'descend'); global_max_new=allfrog(index(1)); if global_max_new.eva>global_max.eva count=0; else count=count+1; end % end end % fprintf('iteration:%d\n',iter); % global_max=allfrog(index(1)); % fprintf('global_max.eva:%f\n',global_max.eva); % fprintf('global_max.pos:'); % fprintf('%d\t',global_max.pos); % fprintf('\n'); t = toc; end

最新推荐

recommend-type

CIFAR-10/100 数据集中文说明

这些文件的格式如下:&lt;1 x label&gt;&lt;3072 x pixel&gt;...&lt;1 x label&gt;&lt;3072 x pixel&gt; 如果您要使用此数据集,请在技术报告中引用。您可以在 Cuda-ConvNet 的项目页面上找到一些可复制的基线结果。这些结果是使用卷积神经...
recommend-type

LeapFrog下载程序教程

LeapFrog下载程序教程!帮您使用leapfrog junior的点读笔,比较实用
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型