python, file_list.sort()之后file_list 值会改变吗?

时间: 2024-03-14 16:45:58 浏览: 93
是的,会改变。`sort()` 方法会在原地对列表进行排序,也就是说,它会直接修改原列表,而不是返回一个新的已排序列表。如果你想对列表进行排序但不想修改原列表,可以使用 `sorted()` 函数,它会返回一个已排序的新列表。例如: ``` file_list = ['c.txt', 'a.txt', 'b.txt'] sorted_file_list = sorted(file_list) print(sorted_file_list) # 输出 ['a.txt', 'b.txt', 'c.txt'] print(file_list) # 输出 ['c.txt', 'a.txt', 'b.txt'] ```
相关问题

优化下面这段代码,要求尽可能的减少计算量,多采用pandas和numdy数据库来进行处理 import random filename = 'supercu.lmp' file_object = open(filename,'r') lines = file_object.readlines() num_layers = 150 num_atom_a_layer = 20000 idx_gradient = 0.1 num_random = [] for idx_layer in range(1,num_layers+1): num_cu_float = pow(idx_layer/num_layers,idx_gradient)*num_atom_a_layer num_cu = int(num_cu_float) list_random = random.sample(range((idx_layer-1)*num_atom_a_layer,idx_layer*num_atom_a_layer),num_cu) num_random = num_random + list_random num_random.sort() for index in range (len(lines)): strT = lines[index] strL = strT.split() if int(strL[0]) in num_random: strT = strT[:14]+'2'+strT[15:] lines[index] = strT file_object.close strTT = "".join(lines) file_object = open(filename,'w') file_object.write(strTT) file_object.close

这段代码可以通过以下方式进行优化: 1. 使用pandas库读取和处理文件,而不是使用Python内置的文件读取方式。 2. 使用numpy库中的random.choice()函数替换random.sample()函数,因为它更快。 3. 用pandas.DataFrame的loc[]方法,而不是循环遍历lines列表,以便更快地查找需要修改的行。 4. 通过使用join()方法,避免在每次循环中将字符串连接到一个字符串中。 以下是优化后的代码: ``` import pandas as pd import numpy as np filename = 'supercu.lmp' # 读取文件 df = pd.read_csv(filename, sep='\s+', header=None, skiprows=9, names=['id', 'type', 'x', 'y', 'z']) # 计算需要修改的行 num_layers = 150 num_atom_a_layer = 20000 idx_gradient = 0.1 num_random = [] for idx_layer in range(1,num_layers+1): num_cu_float = pow(idx_layer/num_layers,idx_gradient)*num_atom_a_layer num_cu = int(num_cu_float) list_random = np.random.choice(range((idx_layer-1)*num_atom_a_layer,idx_layer*num_atom_a_layer),num_cu, replace=False) num_random = np.concatenate((num_random, list_random)) num_random.sort() # 修改需要修改的行 df.loc[df['id'].isin(num_random), 'type'] = 2 # 将修改后的DataFrame转换为字符串 strTT = df.to_csv(sep=' ', index=False, header=False) # 写入文件 with open(filename, 'w') as f: f.write(strTT) ``` 这段代码在读取和处理文件时使用了pandas库,使用numpy库中的random.choice()函数,使用pandas.DataFrame的loc[]方法,以及使用join()方法来避免在每次循环中将字符串连接到一个字符串中。这些优化可以提高代码的性能和效率。

def sort(): # 成绩排序 show() # 显示学生信息列表 if os.path.exists(filename): with open(filename, 'r', encoding = 'UTF-8') as r_file: stu_list = r_file.readlines() stu_new = [] for i in stu_list: d = dict(eval(i)) stu_new.append(d) else: return asc_or_desc = input('请选择(0.升序 1.降序):') if asc_or_desc == '0': asc_or_desc_bool = False # 升序标记 elif asc_or_desc == '1': asc_or_desc_bool = True # 降序标记 else: print('输入错误!') m = input('请选择排序方式:(1.按英语成绩排序 2.按python成绩排序 3.按数学成绩排序 4.按数据结构成绩排序 0.按总成绩排序):') if m == '1': # 按英语成绩排序 stu_new.sort(key = lambda x:int(x['english']), reverse = asc_or_desc_bool) elif m == '2': # 按python成绩排序 stu_new.sort(key = lambda x:int(x['python']), reverse = asc_or_desc_bool) elif m == '3': # 按数学成绩排序 stu_new.sort(key = lambda x:int(x['math']), reverse = asc_or_desc_bool) elif m == '4': # 按数据结构成绩排序 stu_new.sort(key = lambda x:int(x['data']), reverse = asc_or_desc_bool) elif m == '0': # 按总成绩排序 stu_new.sort(key = lambda x:int(x['english']) + int(x['python']) + int(x['math']) + int(x['data']), reverse = asc_or_desc_bool) else: print("输入有误!") show_stu(stu_new)写出上面这段代码的伪代码

定义一个函数sort,没有输入参数 调用show函数,展示学生信息列表 如果文件存在,则打开文件 将文件内容按行读入到列表stu_list中 定义一个空列表stu_new 遍历stu_list中的每个元素i,使用eval函数将其转换为字典类型d 将d添加到stu_new列表中 否则返回 获取排序方式,升序或降序 如果输入不合法,则提示错误 获取排序方式,按照英语成绩、Python成绩、数学成绩、数据结构成绩或总成绩排序 如果输入不合法,则提示错误 根据所选的排序方式,对stu_new列表进行排序,使用lambda表达式指定排序方式和排序顺序 调用show_stu函数,展示排序后的stu_new列表
阅读全文

相关推荐

def passed_temperature_analyse(filename): print("开始分析气温") # spark = SparkSession.builder.master("spark://master:7077").appName("passed_temperature_analyse").getOrCreate() spark = SparkSession.builder.master("local").appName("passed_temperature_analyse").getOrCreate() # spark = SparkSession.builder.master("local[4]").appName("passed_rain_analyse").getOrCreate() df = spark.read.csv(filename, header=True) df_temperature = df.select( # 选择需要的列 df['province'], df['city_name'], df['city_code'], df['temperature'].cast(DecimalType(scale=1)), F.date_format(df['time'], "yyyy-MM-dd").alias("date"), # 得到日期数据 F.hour(df['time']).alias("hour") # 得到小时数据 ) # 筛选四点时次 # df_4point_temperature = df_temperature.filter(df_temperature['hour'].isin([2,4,6,8])) df_4point_temperature = df_temperature.filter(df_temperature['hour'].isin([2, 8, 14, 20])) # df_4point_temperature = df_temperature.filter(df_temperature['hour'].isin([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24])) df_avg_temperature = df_4point_temperature.groupBy("province", "city_name", "city_code", "date").agg( F.count("temperature"), F.avg("temperature").alias("avg_temperature")).filter("count(temperature) = 4").sort( F.asc("avg_temperature")).select("province", "city_name", "city_code", "date", F.format_number('avg_temperature', 1).alias("avg_temperature")) df_avg_temperature.cache() avg_temperature_list = df_avg_temperature.collect() df_avg_temperature.coalesce(1).write.json("file:///home/lee/lab5/passed_temperature.json") print("气温分析完毕") return avg_temperature_list[0:10] # 最低的10个

''''冷夜''' for name,groupmin in df.groupby("年"): # print(name)#1960-2012 groupmin.sort_values(by=['日最低温(0.1℃)'], inplace=True, ascending=False) #ascending=True从-1000到0到1000排列 Lye=groupmin[groupmin["日最低温(0.1℃)"] <groupmin["日最低温(0.1℃)"].quantile(0.1)] #取每年前10% # print( groupmin) b=list(Lye.count()) #年冷夜天数 # print('年冷夜天数:',b) #冬季 groupmin1L_1=Lye[Lye['月']==1] groupmin1L_2=Lye[Lye['月']==2] groupmin1L_12=Lye[Lye['月']==12] aL1=list(groupmin1L_1.count()) aL2=list(groupmin1L_2.count()) aL12=list(groupmin1L_12.count()) # AL=aL1+aL2+aL12 # print(AL) AL=aL1[0]+aL2[0]+aL12[0] # print(AL) #冬季暖夜 array = np.asarray(AL) # print(array) x=array print(x) fig,ax=plt.subplots() y=range(0,36) ax.plot(y,x,'ro-',lw=1,markersize=2,label='line1') plt.show() ,runfile('C:/Users/不想太忙/Desktop/实验1-4_2023年/shiyan11.py', wdir='C:/Users/不想太忙/Desktop/实验1-4_2023年') 37 Traceback (most recent call last): File ~\Desktop\实验1-4_2023年\shiyan11.py:427 ax.plot(y,x,'ro-',lw=1,markersize=2,label='line1') File D:\fanle\lib\site-packages\matplotlib\axes\_axes.py:1743 in plot lines = [*self._get_lines(*args, data=data, **kwargs)] File D:\fanle\lib\site-packages\matplotlib\axes\_base.py:273 in __call__ yield from self._plot_args(this, kwargs) File D:\fanle\lib\site-packages\matplotlib\axes\_base.py:399 in _plot_args raise ValueError(f"x and y must have same first dimension, but " ValueError: x and y must have same first dimension, but have shapes (36,) and (1,)

最新推荐

recommend-type

jsp物流信息网建设(源代码+论文)(2024vl).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

中小学教师教育教学情况调查表(学生家长用).docx

中小学教师教育教学情况调查表(学生家长用)
recommend-type

航空车辆检测8-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar

航空车辆检测8-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rarTepegozz-V2 2024-04-21 12:16 pm ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解和搜索非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 对于最先进的计算机视觉培训笔记本,您可以与此数据集一起使用 该数据集包含4794张图像。 Tepegozz以可可格式注释。 将以下预处理应用于每个图像: *像素数据的自动取向(带有Exif-Arientation剥离) *调整大小为640x640(拉伸) 应用以下扩展来创建每个源图像的3个版本: *水平翻转的50%概率 *垂直翻转的50%概率 *随机裁剪图像的0%至20% * -15和+15度之间的随机旋转 * 0到1.7像素之间的随机高斯模糊 *将盐和胡椒噪声应用于0.1%的像素 以下转换应用于每个图像的边界框: *以下90度旋转之一的同等概
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理