蚁群算法求解多目标优化matlab代码
时间: 2023-10-16 15:09:14 浏览: 269
蚁群算法(Ant Colony Optimization,ACO)是一种基于群体智能的优化算法,用于求解多目标优化问题。下面是一个使用MATLAB实现蚁群算法求解多目标优化问题的示例代码:
```matlab
% 初始化参数
numAnts = 50; % 蚂蚁数量
numIterations = 100; % 迭代次数
alpha = 1; % 信息素重要程度因子
beta = 2; % 启发式信息重要程度因子
rho = 0.5; % 信息素蒸发率
q0 = 0.9; % 选择下一个城市时的探索因子
cityNum = size(distance, 1); % 城市数量
% 初始化信息素矩阵
pheromone = ones(cityNum, cityNum);
for iter = 1:numIterations
% 初始化蚂蚁位置和已访问城市标记
ants = zeros(numAnts, cityNum);
visited = zeros(numAnts, cityNum);
for ant = 1:numAnts
% 随机选择起始城市
startCity = randi(cityNum);
ants(ant, 1) = startCity;
visited(ant, startCity) = 1;
% 沿着路径选择下一个城市
for i = 2:cityNum
currentCity = ants(ant, i-1);
% 计算选择下一个城市的概率
probabilities = (pheromone(currentCity, :) .^ alpha) .* (1 ./ distance(currentCity, :)) .^ beta;
probabilities(visited(ant, :) == 1) = 0; % 已访问城市概率置为0
% 根据概率选择下一个城市
if rand < q0
[maxProb, nextCity] = max(probabilities);
else
probabilities = probabilities / sum(probabilities);
nextCity = rouletteWheelSelection(probabilities);
end
ants(ant, i) = nextCity;
visited(ant, nextCity) = 1;
end
end
% 计算每只蚂蚁的路径长度和目标函数值
pathLengths = zeros(numAnts, 1);
objectives = zeros(numAnts, 2);
for ant = 1:numAnts
pathLength = 0;
for i = 2:cityNum
pathLength = pathLength +
阅读全文