通过cnn卷积神经网络识别电子产品的代码,要求有数据集的加载代码,划分训练集与测试集,识别准确率与识别到的产品名称
时间: 2024-11-13 15:22:58 浏览: 27
使用卷积神经网络(CNN)识别电子产品通常涉及以下几个步骤:数据集加载、预处理、模型构建、训练及评估。以下是一个简化版的代码示例,使用Keras库来实现:
首先,你需要安装必要的库:
```bash
pip install numpy pandas tensorflow scikit-learn
```
然后,以下是代码片段:
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical
# 加载数据集(假设是CSV文件,其中包含图片路径和标签)
data = pd.read_csv('electronics_dataset.csv')
# 图片路径列名假设为'image_path',标签列名假设为'label'
X = data['image_path']
y = data['label']
# 数据预处理,例如读取图片并转换为模型所需的输入格式
img_size = 224 # 您的ResNet50模型所需的输入大小
X = X.apply(lambda x: preprocess_input(cv2.imread(x, cv2.IMREAD_COLOR))) # 读取图片,并对每个像素进行预处理
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 使用ImageDataGenerator进行数据增强
train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'train_dir', # 训练目录
target_size=(img_size, img_size),
batch_size=32,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'val_dir', # 测试目录
target_size=(img_size, img_size),
batch_size=32,
class_mode='categorical')
# 使用预训练的ResNet50作为基础模型
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(img_size, img_size, 3))
# 添加自定义分类层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(len(np.unique(y)), activation='softmax')(x)
# 创建最终模型
model = Model(inputs=base_model.input, outputs=predictions)
# 预训练模型部分固定
for layer in base_model.layers:
layer.trainable = False
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
history = model.fit(
train_generator,
steps_per_epoch=len(train_generator),
epochs=10, # 根据需求调整训练轮数
validation_data=validation_generator,
validation_steps=len(validation_generator))
# 评估模型
score = model.evaluate(test_generator, verbose=0)
print("Test accuracy:", score[1])
# 识别到的产品名称需要与标签对应,比如你可以创建一个字典映射标签到产品名
product_labels = {
0: "Product A",
1: "Product B",
... # 类别与产品名称一一对应
}
# 对单张图片进行识别
new_image_path = "path_to_new_image.jpg"
new_image = cv2.imread(new_image_path, cv2.IMREAD_COLOR)
new_image = preprocess_input(new_image)
prediction = model.predict_classes(new_image)
predicted_product = product_labels[prediction[0]]
```
请确保将上述代码中的文件路径、类别名称以及数据集导入部分替换为你实际的数据环境。
阅读全文