哈夫曼编码 贪心算法 c语言实现

时间: 2023-11-15 22:02:40 浏览: 203
哈夫曼编码是一种广泛用于数据文件压缩的编码方法,其压缩率通常在20%~90%之间。它利用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。哈夫曼编码实质上是利用最优二叉树原理,求最优前缀码的长度,即平均码长或文件总长最小的前缀编码。哈夫曼编码的实现过程可以使用贪心算法,即每次选择频率最小的两个字符进行合并,直到所有字符都被合并为止。C语言实现哈夫曼编码可以使用结构体来表示哈夫曼树节点,使用指针来实现树的构建和遍历,具体实现可以参考相关的C语言教材或者网上的代码示例。
相关问题

用贪心算法解哈夫曼编码问题c语言代码实现

在C语言中,贪心算法可以用来构建哈夫曼树并生成哈夫曼编码,这是通过每次选择两棵权值最小的树合并成新的树,并将这两棵树的权值作为新树的权值来实现的。以下是一个简单的C语言代码示例: ```c #include <stdio.h> #include <stdlib.h> // 结点结构体 typedef struct { int weight; // 权值 char symbol; // 符号 struct Node* left, *right; // 左右子节点 } Node; // 创建新结点 Node* newNode(int weight, char symbol) { Node* node = (Node*)malloc(sizeof(Node)); node->weight = weight; node->symbol = symbol; node->left = node->right = NULL; return node; } // 贪心合并函数 Node* mergeTrees(Node* t1, Node* t2) { if (!t1 || !t2) return t1 ? t1 : t2; if (t1->weight < t2->weight) { t1->right = mergeTrees(t1->right, t2); return t1; } else { t2->left = mergeTrees(t1, t2->left); return t2; } } // 构建哈夫曼树 Node* buildHuffmanTree(int weights[], int n) { Node** heap = (Node**)malloc(n * sizeof(Node*)); for (int i = 0; i < n; ++i) { heap[i] = newNode(weights[i], i + 'A'); } while (heap[0]) { int minIndex1 = 0, minIndex2 = 0; for (int i = 1; i < n; ++i) { if (heap[minIndex1]->weight > heap[i]->weight) { minIndex1 = i; } } for (int j = 1; j < n; ++j) { if (heap[j] != heap[minIndex1] && heap[j]->weight < heap[minIndex2]->weight) { minIndex2 = j; } } Node* temp = mergeTrees(heap[minIndex1], heap[minIndex2]); heap[minIndex1] = heap[minIndex2] = NULL; heap[n++] = temp; } return heap[0]; } // 打印哈夫曼编码 void printCodes(Node* root, int symbolToCode[]) { if (!root) return; if (!root->left && !root->right) symbolToCode[root->symbol - 'A'] = '0'; else { printCodes(root->left, symbolToCode); printCodes(root->right, symbolToCode); } } int main() { int weights[] = {5, 3, 4, 6}; // 示例权重数组 int n = sizeof(weights) / sizeof(weights[0]); Node* huffTree = buildHuffmanTree(weights, n); int symbolToCode[26] = {0}; printf("Huffman Tree:\n"); printCodes(huffTree, symbolToCode); return 0; } ``` 这个代码首先创建了一个堆,然后不断从堆中取出两个权值最小的结点合并,直到只剩下一个结点。最后,它会递归地生成每个字符的哈夫曼编码。

贪心算法哈夫曼编码C语言

哈夫曼编码是一种基于贪心算法的压缩算法,其核心思想是将出现频率较高的字符用较短的编码表示,而出现频率较低的字符用较长的编码表示。以下是哈夫曼编码的C语言实现: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_TREE_HT 100 struct MinHeapNode { char data; unsigned freq; struct MinHeapNode *left, *right; }; struct MinHeap { unsigned size; unsigned capacity; struct MinHeapNode **array; }; struct MinHeapNode *newNode(char data, unsigned freq) { struct MinHeapNode *temp = (struct MinHeapNode *)malloc(sizeof(struct MinHeapNode)); temp->left = temp->right = NULL; temp->data = data; temp->freq = freq; return temp; } struct MinHeap *createMinHeap(unsigned capacity) { struct MinHeap *minHeap = (struct MinHeap *)malloc(sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHeapNode **)malloc(minHeap->capacity * sizeof(struct MinHeapNode *)); return minHeap; } void swapMinHeapNode(struct MinHeapNode **a, struct MinHeapNode **b) { struct MinHeapNode *t = *a; *a = *b; *b = t; } void minHeapify(struct MinHeap *minHeap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq) smallest = left; if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq) smallest = right; if (smallest != idx) { swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } int isSizeOne(struct MinHeap *minHeap) { return (minHeap->size == 1); } struct MinHeapNode *extractMin(struct MinHeap *minHeap) { struct MinHeapNode *temp = minHeap->array[0]; minHeap->array[0] = minHeap->array[minHeap->size - 1]; --minHeap->size; minHeapify(minHeap, 0); return temp; } void insertMinHeap(struct MinHeap *minHeap, struct MinHeapNode *minHeapNode) { ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) { minHeap->array[i] = minHeap->array[(i - 1) / 2]; i = (i - 1) / 2; } minHeap->array[i] = minHeapNode; } void buildMinHeap(struct MinHeap *minHeap) { int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i >= 0; --i) minHeapify(minHeap, i); } void printArr(int arr[], int n) { int i; for (i = 0; i < n; ++i) printf("%d", arr[i]); printf("\n"); } int isLeaf(struct MinHeapNode *root) { return !(root->left) && !(root->right); } struct MinHeap *createAndBuildMinHeap(char data[], int freq[], int size) { struct MinHeap *minHeap = createMinHeap(size); for (int i = 0; i < size; ++i) minHeap->array[i] = newNode(data[i], freq[i]); minHeap->size = size; buildMinHeap(minHeap); return minHeap; } struct MinHeapNode *buildHuffmanTree(char data[], int freq[], int size) { struct MinHeapNode *left, *right, *top; struct MinHeap *minHeap = createAndBuildMinHeap(data, freq, size); while (!isSizeOne(minHeap)) { left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); } return extractMin(minHeap); } void printCodes(struct MinHeapNode *root, int arr[], int top) { if (root->left) { arr[top] = 0; printCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = 1; printCodes(root->right, arr, top + 1); } if (isLeaf(root)) { printf("%c: ", root->data); printArr(arr, top); } } void HuffmanCodes(char data[], int freq[], int size) { struct MinHeapNode *root = buildHuffmanTree(data, freq, size); int arr[MAX_TREE_HT], top = 0; printCodes(root, arr, top); } int main() { char arr[] = {'a', 'b', 'c', 'd', 'e', 'f'}; int freq[] = {5, 9, 12, 13, 16, 45}; int size = sizeof(arr) / sizeof(arr[0]); HuffmanCodes(arr, freq, size); return 0; } ``` 以上代码实现了哈夫曼编码的生成过程,包括建立哈夫曼树、生成编码等步骤。
阅读全文

相关推荐

大家在看

recommend-type

MSC.MARC python后处理库py_post(数据提取)

语言:python2; 代码:源码以及讲解以PPT形式上传; 有py_post后处理源代码以及对应详解PPT! PPT中包含几个简单的小例子以及环境配置方法,有需要的小伙伴可以即取即用; 想要进行MSC.MARC后处理学习,PPT中也有介绍相应的方法哦。
recommend-type

WebBrowser脚本错误的完美解决方案

当IE浏览器遇到脚本错误时浏览器,左下角会出现一个黄色图标,点击可以查看脚本错误的详细信息,并不会有弹出的错误信息框。当我们使用WebBrowser控件时有错误信息框弹出,这样程序显的很不友好,而且会让一些自动执行的程序暂停。我看到有人采取的解决方案是做一个窗体杀手程序来关闭弹出的窗体。本文探讨的方法是从控件解决问题。
recommend-type

RealityCapture中文教程

RealityCapture中文教程
recommend-type

二维Hilbert-Huang变换及其在图像增强中的应用 (2009年)

为了更加有效地提取图像细节,在分析希尔伯特――黄变换(Hilbert―Huang Transform, HHT)的基础上给出了二维HHT的实现方法,并应用于图像增强。首先对二维图像信号进行基于Delaunay三角分割的二维经验模式分解,再将分解得到信号的各个内蕴含模式分量分别作总体Hilbert变换。实验结果表明,此方法可细致地描绘出图像的边缘信息,并可在不同程度上体现图像的轮廓信息。该研究在图像压缩和图像分割中有重要的意义。
recommend-type

matlab-基于互相关的亚像素图像配准算法的matlab仿真-源码

matlab_基于互相关的亚像素图像配准算法的matlab仿真_源码

最新推荐

recommend-type

哈夫曼编码(贪心算法)报告.doc

哈夫曼编码是一种基于贪心策略的高效数据文件压缩编码方法,其核心在于通过构建最优前缀码来实现编码效率的最大化。在本实验报告中,我们将深入理解哈夫曼编码的工作原理、设计思想以及其实现过程。 1. 问题描述: ...
recommend-type

用贪心算法解哈夫曼编码问题(计算机算法设计与分析)

哈夫曼编码的构建过程可以用贪心算法来实现。以下是详细步骤: 1. **建立数学模型**:首先,我们需要一个字符集及其对应的出现频率。每个字符对应一个权值,权值表示该字符在文本中出现的次数。我们的目标是构建一...
recommend-type

三元哈夫曼编码 哈夫曼树

构造哈夫曼树的过程是一个贪心算法过程。首先,我们有一组数据,每组数据代表一个字符及其出现的频率。根据这些频率,我们创建一个森林,其中的每棵树都只包含一个节点,这个节点的频率就是该字符的频率。然后,算法...
recommend-type

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制
recommend-type

Python代码实现带装饰的圣诞树控制台输出

内容概要:本文介绍了一段简单的Python代码,用于在控制台中输出一棵带有装饰的圣诞树。具体介绍了代码结构与逻辑,包括如何计算并输出树形的各层,如何加入装饰元素以及打印树干。还提供了示例装饰字典,允许用户自定义圣诞树装饰位置。 适用人群:所有对Python编程有一定了解的程序员,尤其是想要学习控制台图形输出的开发者。 使用场景及目标:适用于想要掌握如何使用Python代码创建控制台艺术,特别是对于想要增加节日氛围的小项目。目标是帮助开发者理解和实现基本的字符串操作与格式化技巧,同时享受创造乐趣。 其他说明:本示例不仅有助于初学者理解基本的字符串处理和循环机制,而且还能激发学习者的编程兴趣,通过调整装饰物的位置和树的大小,可以让输出更加个性化和丰富。
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。