请帮我用pytorch框架写一个双并行的卷积神经网络
时间: 2023-05-24 14:06:49 浏览: 91
卷积神经网络基础 pytorch
以下是一个使用双并行的卷积神经网络的示例代码:
```python
import torch
from torch import nn
from torch.nn.parallel import DataParallel
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, padding=2)
self.bn1 = nn.BatchNorm2d(16)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, padding=2)
self.bn2 = nn.BatchNorm2d(32)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(32 * 8 * 8, 100)
self.fc2 = nn.Linear(100, 10)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = nn.functional.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.bn2(x)
x = nn.functional.relu(x)
x = self.pool2(x)
x = x.view(-1, 32 * 8 * 8)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
if __name__ == '__main__':
device = torch.device('cuda:0')
model = ConvNet()
model = DataParallel(model)
model.to(device)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
# training loop
for i in range(100):
x = torch.randn(16, 3, 32, 32).to(device)
y = torch.randint(0, 10, (16,)).to(device)
y_pred = model(x)
loss = loss_fn(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % 10 == 0:
print(f'Epoch {i}: Loss = {loss.item()}')
```
本代码中,我们使用了一个典型的卷积神经网络,使用`DataParallel`将模型并行化,以在多个GPU上训练模型。在该模型中,我们使用了两个卷积层、两个池化层和两个全连接层。我们还定义了一些训练循环,包括定义优化器、损失函数以及在每个训练步骤中执行的前向传递、反向传递和优化步骤。
阅读全文