现有两个一元多项式,考虑空间利用率,设计一种方法,实现两个一元多项式相加。(注:先设计物理存储结构,再写出相加运算的伪代码。) 
时间: 2023-03-15 15:19:41 浏览: 20
首先,需要定义一个物理存储结构,来存储这两个一元多项式。这个结构可以由两个数组组成,数组A用于存储第一个一元多项式的系数,数组B用于存储第二个一元多项式的系数。然后,使用循环遍历数组A和数组B,将其中的元素相加,并将相加的结果存储到一个新的数组C中。最终,数组C中的元素就是两个一元多项式相加的结果。伪代码如下: for i = 0 to n-1
C[i] = A[i] + B[i]
end for
相关问题
设计一个算法,创建两个一元多项式,输出一元多项式,实现两个一元多项式相加,输出相加后的一元多项式
好的,这是一个比较简单的算法,可以使用数组来存储多项式的系数,下面是完整的代码:
```python
def create_poly():
n = int(input("请输入多项式的最高次数:"))
poly = [0] * (n+1)
for i in range(n, -1, -1):
poly[i] = int(input("请输入x^{}的系数:".format(i)))
return poly
def print_poly(poly):
n = len(poly) - 1
for i in range(n, -1, -1):
if poly[i] != 0:
if i == n:
print(poly[i], end='')
else:
print(" + ", end='')
print(poly[i], end='')
print("x^{}".format(i), end='')
def add_poly(poly1, poly2):
n1 = len(poly1)
n2 = len(poly2)
if n1 > n2:
poly = poly1.copy()
for i in range(n2):
poly[i] += poly2[i]
else:
poly = poly2.copy()
for i in range(n1):
poly[i] += poly1[i]
return poly
print("请输入第一个多项式:")
poly1 = create_poly()
print("第一个多项式为:")
print_poly(poly1)
print("\n请输入第二个多项式:")
poly2 = create_poly()
print("第二个多项式为:")
print_poly(poly2)
print("\n两个多项式相加的结果为:")
poly = add_poly(poly1, poly2)
print_poly(poly)
```
如果你有任何问题,可以随时问我。
设计一个算法且利用单链表实现两个多项式相加,创建两个一元多项式,输出一元多项式,实现两个一元多项式相加,输出相加后的一元多项式
好的,这是一个关于多项式相加的编程问题。以下是一个可能的实现:
```python
class Node:
def __init__(self, coef, exp, next=None):
self.coef = coef
self.exp = exp
self.next = next
class Polynomial:
def __init__(self):
self.head = None
def add_term(self, coef, exp):
if coef == 0:
return
if self.head is None:
self.head = Node(coef, exp)
return
if exp > self.head.exp:
self.head = Node(coef, exp, self.head)
return
if exp == self.head.exp:
self.head.coef += coef
if self.head.coef == 0:
self.head = self.head.next
return
curr = self.head
while curr.next is not None and curr.next.exp > exp:
curr = curr.next
if curr.next is not None and curr.next.exp == exp:
curr.next.coef += coef
if curr.next.coef == 0:
curr.next = curr.next.next
return
curr.next = Node(coef, exp, curr.next)
def __add__(self, other):
result = Polynomial()
curr1, curr2 = self.head, other.head
while curr1 is not None and curr2 is not None:
if curr1.exp > curr2.exp:
result.add_term(curr1.coef, curr1.exp)
curr1 = curr1.next
elif curr1.exp < curr2.exp:
result.add_term(curr2.coef, curr2.exp)
curr2 = curr2.next
else:
result.add_term(curr1.coef + curr2.coef, curr1.exp)
curr1, curr2 = curr1.next, curr2.next
while curr1 is not None:
result.add_term(curr1.coef, curr1.exp)
curr1 = curr1.next
while curr2 is not None:
result.add_term(curr2.coef, curr2.exp)
curr2 = curr2.next
return result
def __str__(self):
terms = []
curr = self.head
while curr is not None:
if curr.exp == 0:
terms.append(str(curr.coef))
elif curr.exp == 1:
terms.append(f"{curr.coef}x")
else:
terms.append(f"{curr.coef}x^{curr.exp}")
curr = curr.next
if not terms:
return "0"
return " + ".join(terms)
p1 = Polynomial()
p1.add_term(2, 3)
p1.add_term(3, 2)
p1.add_term(4, 1)
p1.add_term(5, 0)
p2 = Polynomial()
p2.add_term(3, 4)
p2.add_term(2, 2)
p2.add_term(1, 1)
p2.add_term(6, 0)
p3 = p1 + p2
print(p1)
print(p2)
print(p3)
```
这个实现使用了单链表来存储多项式的每一项,其中每个节点包含了系数和指数。`add_term` 方法用于向多项式中添加一项,它会按照指数从大到小的顺序插入节点。`__add__` 方法用于实现多项式相加,它会遍历两个多项式的节点,按照指数从大到小的顺序将相同指数的项相加,并将结果存储在一个新的多项式中。`__str__` 方法用于将多项式转换为字符串,它会遍历多项式的节点,将每一项转换为字符串后拼接起来。
在上面的代码中,我们创建了两个多项式 `p1` 和 `p2`,分别为 $2x^3 + 3x^2 + 4x + 5$ 和 $3x^4 + 2x^2 + x + 6$。然后我们将它们相加得到了一个新的多项式 `p3`,它为 $3x^4 + 2x^3 + 5x^2 + 5x + 11$。最后我们分别输出了 `p1`、`p2` 和 `p3` 的字符串表示。
相关推荐















