解释:self.actor = RnnModel(input_size=300, hidden_size=50, num_layers=3, output_size=action_dim).cuda() self.target_actor = RnnModel(input_size=state_dim, hidden_size=hidden_size, num_layers=num_layers, output_size=action_dim).cuda() self.target_actor.load_state_dict(self.actor.state_dict())
时间: 2023-06-08 08:05:43 浏览: 237
actor.rar_Actor Critic_CRITIC_adp_critic network_monthhu7
5星 · 资源好评率100%
这段代码定义了两个 RnnModel 类的实例,即 self.actor 和 self.target_actor,它们的输入尺寸分别为 input_size 和 state_dim,隐藏层尺寸为 hidden_size,层数为 num_layers,输出尺寸为 action_dim。这两个实例都被部署在 GPU 上(.cuda()),并且 self.target_actor 的参数值被初始化为 self.actor 的参数值(.load_state_dict()函数)。这个代码块通常是为了实现深度强化学习中的 actor-critic 算法,其中 self.actor 作为“actor”负责根据当前状态输出动作,self.target_actor 作为“target actor”用于计算目标值。
阅读全文