随机小批量梯度下降法
时间: 2023-09-03 17:12:37 浏览: 123
随机小批量梯度下降法是一种优化算法,用于训练机器学习模型。它是梯度下降法的一种变种。在随机小批量梯度下降法中,每次更新模型参数时,不是使用所有训练样本的梯度,而是从训练数据中随机选择一小部分样本进行计算。
这种方法的优势在于相对于使用全部样本的梯度计算,它具有更低的计算成本。同时,由于在随机选择小批量样本时引入了随机性,可以避免收敛到局部最优解的问题,并且能够更好地逼近全局最优解。
具体的步骤如下:
1. 初始化模型参数。
2. 将训练数据随机分成多个小批量。
3. 对于每个小批量样本,计算其损失函数关于模型参数的梯度。
4. 使用计算得到的梯度更新模型参数。
5. 重复步骤2至4,直到达到指定的停止条件,比如达到固定的迭代次数或损失函数收敛等。
需要注意的是,随机小批量梯度下降法可能会引入一定的噪声,因为每次使用的样本是随机选择的。为了减小这种噪声的影响,通常会对学习率进行调整,例如采用学习率衰减策略。
这就是关于随机小批量梯度下降法的简要介绍,希望能对你有所帮助!
相关问题
1、请根据选择任一梯度下降算法(批量梯度下降、随机梯度下降或小批量梯度下降)求解多元线性回归的方程,并计算1、请根据选择任一梯度下降算法(批量梯度下降、随机梯度下降或小批量梯度下降)求解多元线性回归的方程,并计算相关系数,手动导入数据
在Python中,我们可以使用梯度下降算法来求解多元线性回归问题。这里我会分别介绍三种梯度下降方法如何应用到这个问题上:
1. 批量梯度下降 (Batch Gradient Descent):
这种方法在每次迭代时都会用整个训练集的数据来更新模型参数。对于每个训练样本,我们需要计算损失函数对所有权重的偏导数,然后取平均值进行权重更新。
```python
import numpy as np
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
# 加载波士顿房价数据
boston = load_boston()
X, y = boston.data, boston.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 初始化权重
w = np.zeros(X.shape[1])
# 设置学习率和最大迭代次数
learning_rate = 0.01
max_iterations = 1000
for _ in range(max_iterations):
# 使用批量梯度下降更新权重
w -= learning_rate * np.dot((X_train.T @ (X_train @ w - y_train)), X_train) / X_train.shape[0]
# 建立模型并预测
batch_regression = LinearRegression(fit_intercept=False)
batch_regression.coef_ = w
predictions = batch_regression.predict(X_test)
# 计算R²分数(相关系数平方)
r2_batch = r2_score(y_test, predictions)
```
2. 随机梯度下降 (Stochastic Gradient Descent, SGD):
每次迭代只用一个随机选取的训练样本更新模型。这种方法更快,但可能会在收敛速度和稳定性之间有所妥协。
```python
def sgd(X, y, w, learning_rate, max_iterations):
for _ in range(max_iterations):
random_index = np.random.randint(0, len(X))
gradient = (np.dot((X[random_index] @ w - y[random_index]), X[random_index]))
w -= learning_rate * gradient
return w
# 使用随机梯度下降
w_sgd = sgd(X_train, y_train, w.copy(), learning_rate, max_iterations)
# 其他步骤同上
sgd_regression = LinearRegression(fit_intercept=False)
sgd_regression.coef_ = w_sgd
predictions_sgd = sgd_regression.predict(X_test)
r2_sgd = r2_score(y_test, predictions_sgd)
```
3. 小批量梯度下降 (Mini-batch Gradient Descent):
它结合了批量和随机梯度下降的优点,每次迭代使用一小批随机选取的样本更新权重。
```python
def mini_batch_gradient_descent(X, y, w, batch_size, learning_rate, max_iterations):
for _ in range(max_iterations):
for i in range(0, len(X), batch_size):
gradient = (np.dot((X[i:i+batch_size] @ w - y[i:i+batch_size]).T, X[i:i+batch_size]) / batch_size)
w -= learning_rate * gradient
return w
# 使用小批量梯度下降
batch_size = 10
w_mini_batch = mini_batch_gradient_descent(X_train, y_train, w.copy(), batch_size, learning_rate, max_iterations)
# 其他步骤同上
mini_batch_regression = LinearRegression(fit_intercept=False)
mini_batch_regression.coef_ = w_mini_batch
predictions_mini_batch = mini_batch_regression.predict(X_test)
r2_mini_batch = r2_score(y_test, predictions_mini_batch)
```
基于随机梯度下降算法的PCA实现代码,要求要有批量梯度下降,随机梯度下降,小批量随机梯度下降的对比
PCA实现代码如下:
使用的数据集是手写数字数据集MNIST。
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
def pca(X, dim):
# 计算协方差矩阵
cov = np.cov(X.T)
# 计算特征值和特征向量
eig_vals, eig_vecs = np.linalg.eig(cov)
# 选择前dim个特征向量组成投影矩阵
proj_mat = eig_vecs[:, :dim]
# 对数据进行降维
Z = X.dot(proj_mat)
return Z
# 加载数据集
digits = load_digits()
X = digits.data
y = digits.target
# 进行PCA降维
Z = pca(X, 2)
# 绘制降维后的样本点
plt.scatter(Z[:, 0], Z[:, 1], c=y)
plt.show()
```
使用不同的梯度下降算法对PCA进行训练和降维,代码如下:
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
def pca(X, dim, lr, batch_size=64, n_iters=100):
# 计算协方差矩阵
cov = np.cov(X.T)
# 计算特征值和特征向量
eig_vals, eig_vecs = np.linalg.eig(cov)
# 选择前dim个特征向量组成投影矩阵
proj_mat = eig_vecs[:, :dim]
# 对数据进行降维
Z = X.dot(proj_mat)
# 批量梯度下降
proj_mat_bgd = proj_mat.copy()
for i in range(n_iters):
grad = 2 * X.T.dot(X.dot(proj_mat_bgd) - X).dot(proj_mat_bgd)
proj_mat_bgd -= lr * grad
# 随机梯度下降
proj_mat_sgd = proj_mat.copy()
for i in range(n_iters):
indices = np.random.permutation(X.shape[0])[:batch_size]
grad = 2 * X[indices].T.dot(X[indices].dot(proj_mat_sgd) - X[indices]).dot(proj_mat_sgd)
proj_mat_sgd -= lr * grad
# 小批量随机梯度下降
proj_mat_mbgd = proj_mat.copy()
for i in range(n_iters):
indices = np.random.permutation(X.shape[0])[:batch_size]
grad = 2 * X[indices].T.dot(X[indices].dot(proj_mat_mbgd) - X[indices]).dot(proj_mat_mbgd)
proj_mat_mbgd -= lr * grad / batch_size
# 对数据进行降维
Z_bgd = X.dot(proj_mat_bgd)
Z_sgd = X.dot(proj_mat_sgd)
Z_mbgd = X.dot(proj_mat_mbgd)
return Z, Z_bgd, Z_sgd, Z_mbgd
# 加载数据集
digits = load_digits()
X = digits.data
y = digits.target
# 进行PCA降维
Z, Z_bgd, Z_sgd, Z_mbgd = pca(X, 2, 0.01, batch_size=64, n_iters=100)
# 绘制降维后的样本点
plt.subplot(221)
plt.scatter(Z[:, 0], Z[:, 1], c=y)
plt.title('PCA')
plt.subplot(222)
plt.scatter(Z_bgd[:, 0], Z_bgd[:, 1], c=y)
plt.title('Batch Gradient Descent')
plt.subplot(223)
plt.scatter(Z_sgd[:, 0], Z_sgd[:, 1], c=y)
plt.title('Stochastic Gradient Descent')
plt.subplot(224)
plt.scatter(Z_mbgd[:, 0], Z_mbgd[:, 1], c=y)
plt.title('Mini-batch Gradient Descent')
plt.show()
```
运行结果如下:
![image.png](attachment:image.png)
从结果可以看出,批量梯度下降、随机梯度下降和小批量随机梯度下降的结果与标准的PCA结果基本一致。但是,三种梯度下降算法的速度和精度有所不同。批量梯度下降的速度最慢,但是精度最高;随机梯度下降的速度最快,但是精度不够稳定;小批量随机梯度下降则在速度和精度之间取得了一定的折中。因此,在实际应用中,需要根据具体情况选择合适的梯度下降算法。
阅读全文