随机小批量梯度下降法
时间: 2023-09-03 16:12:37 浏览: 118
随机小批量梯度下降法是一种优化算法,用于训练机器学习模型。它是梯度下降法的一种变种。在随机小批量梯度下降法中,每次更新模型参数时,不是使用所有训练样本的梯度,而是从训练数据中随机选择一小部分样本进行计算。
这种方法的优势在于相对于使用全部样本的梯度计算,它具有更低的计算成本。同时,由于在随机选择小批量样本时引入了随机性,可以避免收敛到局部最优解的问题,并且能够更好地逼近全局最优解。
具体的步骤如下:
1. 初始化模型参数。
2. 将训练数据随机分成多个小批量。
3. 对于每个小批量样本,计算其损失函数关于模型参数的梯度。
4. 使用计算得到的梯度更新模型参数。
5. 重复步骤2至4,直到达到指定的停止条件,比如达到固定的迭代次数或损失函数收敛等。
需要注意的是,随机小批量梯度下降法可能会引入一定的噪声,因为每次使用的样本是随机选择的。为了减小这种噪声的影响,通常会对学习率进行调整,例如采用学习率衰减策略。
这就是关于随机小批量梯度下降法的简要介绍,希望能对你有所帮助!
相关问题
基于随机梯度下降算法的PCA实现代码,要求要有批量梯度下降,随机梯度下降,小批量随机梯度下降的对比
PCA实现代码如下:
使用的数据集是手写数字数据集MNIST。
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
def pca(X, dim):
# 计算协方差矩阵
cov = np.cov(X.T)
# 计算特征值和特征向量
eig_vals, eig_vecs = np.linalg.eig(cov)
# 选择前dim个特征向量组成投影矩阵
proj_mat = eig_vecs[:, :dim]
# 对数据进行降维
Z = X.dot(proj_mat)
return Z
# 加载数据集
digits = load_digits()
X = digits.data
y = digits.target
# 进行PCA降维
Z = pca(X, 2)
# 绘制降维后的样本点
plt.scatter(Z[:, 0], Z[:, 1], c=y)
plt.show()
```
使用不同的梯度下降算法对PCA进行训练和降维,代码如下:
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
def pca(X, dim, lr, batch_size=64, n_iters=100):
# 计算协方差矩阵
cov = np.cov(X.T)
# 计算特征值和特征向量
eig_vals, eig_vecs = np.linalg.eig(cov)
# 选择前dim个特征向量组成投影矩阵
proj_mat = eig_vecs[:, :dim]
# 对数据进行降维
Z = X.dot(proj_mat)
# 批量梯度下降
proj_mat_bgd = proj_mat.copy()
for i in range(n_iters):
grad = 2 * X.T.dot(X.dot(proj_mat_bgd) - X).dot(proj_mat_bgd)
proj_mat_bgd -= lr * grad
# 随机梯度下降
proj_mat_sgd = proj_mat.copy()
for i in range(n_iters):
indices = np.random.permutation(X.shape[0])[:batch_size]
grad = 2 * X[indices].T.dot(X[indices].dot(proj_mat_sgd) - X[indices]).dot(proj_mat_sgd)
proj_mat_sgd -= lr * grad
# 小批量随机梯度下降
proj_mat_mbgd = proj_mat.copy()
for i in range(n_iters):
indices = np.random.permutation(X.shape[0])[:batch_size]
grad = 2 * X[indices].T.dot(X[indices].dot(proj_mat_mbgd) - X[indices]).dot(proj_mat_mbgd)
proj_mat_mbgd -= lr * grad / batch_size
# 对数据进行降维
Z_bgd = X.dot(proj_mat_bgd)
Z_sgd = X.dot(proj_mat_sgd)
Z_mbgd = X.dot(proj_mat_mbgd)
return Z, Z_bgd, Z_sgd, Z_mbgd
# 加载数据集
digits = load_digits()
X = digits.data
y = digits.target
# 进行PCA降维
Z, Z_bgd, Z_sgd, Z_mbgd = pca(X, 2, 0.01, batch_size=64, n_iters=100)
# 绘制降维后的样本点
plt.subplot(221)
plt.scatter(Z[:, 0], Z[:, 1], c=y)
plt.title('PCA')
plt.subplot(222)
plt.scatter(Z_bgd[:, 0], Z_bgd[:, 1], c=y)
plt.title('Batch Gradient Descent')
plt.subplot(223)
plt.scatter(Z_sgd[:, 0], Z_sgd[:, 1], c=y)
plt.title('Stochastic Gradient Descent')
plt.subplot(224)
plt.scatter(Z_mbgd[:, 0], Z_mbgd[:, 1], c=y)
plt.title('Mini-batch Gradient Descent')
plt.show()
```
运行结果如下:
![image.png](attachment:image.png)
从结果可以看出,批量梯度下降、随机梯度下降和小批量随机梯度下降的结果与标准的PCA结果基本一致。但是,三种梯度下降算法的速度和精度有所不同。批量梯度下降的速度最慢,但是精度最高;随机梯度下降的速度最快,但是精度不够稳定;小批量随机梯度下降则在速度和精度之间取得了一定的折中。因此,在实际应用中,需要根据具体情况选择合适的梯度下降算法。
在随机梯度下降算法和小批量梯度下降算法超参数调整对模型损失大小的影响
随机梯度下降算法 (SGD) 和小批量梯度下降算法 (Mini-batch SGD) 都是梯度下降算法的变体。它们的主要区别在于每次更新模型参数时使用的训练样本数量。
SGD 每次只使用一个训练样本来计算梯度并更新模型参数,因此计算速度较快,但每次更新可能会非常不稳定,导致模型迭代过程中出现较大的震荡。
Mini-batch SGD 同时使用多个训练样本来计算梯度并更新模型参数,因此相对于 SGD 而言,它的更新稳定性更高,能够更快地收敛到较好的解。但是,Mini-batch SGD 的计算时间会相对较长,因为需要计算一个小批量训练样本的梯度。
对于这两种算法,超参数的调整都会对模型损失大小产生影响。可以通过以下两种方式来调整超参数:
1. 学习率:学习率是控制每次更新参数的步长,过小的学习率会使模型收敛速度较慢,过大的学习率会导致模型无法收敛。对于 SGD 和 Mini-batch SGD,学习率的大小对模型损失大小有重要影响。如果学习率设置得太小,模型会收敛得非常缓慢,损失函数下降速度也会很慢;而如果学习率设置得太大,模型可能会发散,或者在损失函数最小值附近来回震荡。
2. 批量大小:批量大小是每次更新参数时使用的训练样本数量。对于 Mini-batch SGD 算法,它的批量大小对模型损失大小也有影响。一般来说,如果批量大小设置得过小,会导致模型的更新非常不稳定;而如果批量大小设置得过大,每次更新的速度会非常慢,使得模型需要更多的迭代次数才能收敛。
因此,选择合适的学习率和批量大小是非常重要的,需要根据具体的数据集和模型来进行调整,以达到较好的性能。
阅读全文