梯度下降、随机梯度下降、小批量梯度下降
时间: 2023-09-02 07:11:01 浏览: 120
梯度下降是一种优化算法,用于调节权重向量,通过计算每个权重的梯度,更新权值,从而使目标函数尽可能最小化。全梯度下降算法(FGD)是一种传统的梯度下降算法,它计算训练集上所有样本的误差,并对其进行求和和平均,然后沿着梯度的相反方向移动权重向量,以减少目标函数的值。然而,由于需要在整个数据集上计算所有梯度,FGD的速度较慢,且无法处理超出内存容量限制的数据集。另一种梯度下降算法是随机梯度下降(SGD),它在每次更新时只使用一个样本的梯度,从而加快了速度。小批量梯度下降(MBGD)是FGD和SGD的一种折中方案,每次从训练样本集中随机抽取一个较小的样本集,然后在该小样本集上使用FGD进行权重的迭代更新。小批量梯度下降兼顾了FGD和SGD的优点,是深度学习优化中常用的方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [全梯度下降算法、随机梯度下降算法、小批量梯度下降算法、随机平均梯度下降算法、梯度下降算法总结](https://blog.csdn.net/qq_43874317/article/details/128247578)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文