动态规划 最优二叉查找树
时间: 2023-11-04 14:51:31 浏览: 119
动态规划可以应用于求解最优二叉查找树问题。最优二叉查找树也称为哈夫曼树,是一种特殊的二叉查找树,其节点具有非负的权值。目标是构建一棵具有最小搜索代价的二叉查找树。
在动态规划求解最优二叉查找树问题时,可以采用自底向上的方式进行计算。首先,需要定义一个动态规划数组dp来保存计算过程中的中间结果。dp[i][j]表示关键字集合中从第i个关键字到第j个关键字构成的最优二叉查找树的期望搜索代价。
动态规划的核心思想是将原问题划分为若干子问题,并通过求解子问题的最优解来求解原问题的最优解。在求解最优二叉查找树问题时,可以考虑将关键字集合划分为两部分,即以k作为根节点的左子树和右子树。那么可以得到以下递推关系:
dp[i][j] = min(dp[i][k-1] + dp[k+1][j]) + sum(p[i:j])
其中dp[i][j]表示从第i个关键字到第j个关键字构成的最优二叉查找树的期望搜索代价,p[i:j]表示第i个关键字到第j个关键字的权值之和。
根据这个递推关系,可以使用双重循环遍历关键字集合的所有可能划分,并计算出dp数组的值。最终,dp[n]即为所求的最优二叉查找树的期望搜索代价,其中n为关键字的总数。
通过动态规划求解最优二叉查找树问题,可以有效地避免重复计算,提高求解效率。
相关问题
动态规划最优二叉搜索树
动态规划最优二叉搜索树,又叫做最优二叉查找树,是指在一棵二叉查找树中,查找每个节点的概率给定,如何构造一棵高度最小、查找代价最小的二叉查找树。
动态规划最优二叉搜索树的解法是基于最优子结构和无后效性的原理,可以看做是一种自底向上的求解方法。具体来说,它通过计算不同子树的最优解,并将其组合成更大的子树的最优解,最终得到整棵树的最优解。
算法的基本思想是:用一个二维数组dp[i][j]表示从节点i到节点j构成的最优二叉搜索树的代价,其中i<=j,对于i>j的情况,dp[i][j]的值为0。通过填表格的方式,我们可以依次求出dp[1][n],即整棵二叉搜索树的最优代价。
具体来说,我们可以按照以下步骤进行动态规划:
1. 初始化dp数组,将所有对角线上的元素设为对应节点的查找概率;
2. 从小到大枚举区间长度len,对于每个长度为len的区间[i, i+len-1],枚举其根节点j,计算dp[i][i+len-1]的值;
3. 对于每个区间[i, i+len-1],计算其左子树和右子树的最小代价,然后将它们相加得到dp[i][i+len-1]的值;
4. 最终dp[1][n]即为整棵树的最小代价。
需要注意的是,动态规划最优二叉搜索树算法的时间复杂度为O(n^3),其中n为节点数。
最优二叉查找树动态规划法
最优二叉查找树问题也称为哈夫曼树问题,是动态规划的一个经典问题。该问题的目标是构建一棵二叉查找树,使得查询所有元素的平均代价最小。
假设我们有一个有序序列 {a1, a2, ..., an},并且每个元素 ai 的搜索概率为 pi。我们需要构建一棵二叉查找树,其中每个元素 ai 是一个叶子节点,其他节点为虚拟节点。我们需要求出一棵代价最小的二叉查找树。
我们可以使用动态规划的方法来解决这个问题。首先定义一个二维数组 cost[i][j],表示子树 {ai, ai+1, ..., aj} 的最小代价。我们可以通过以下递推式来求解该数组:
cost[i][j] = min{cost[i][k-1] + cost[k+1][j] + sum(pi) (i <= k <= j)}
其中 sum(pi) 表示子树 {ai, ai+1, ..., aj} 中所有元素的搜索概率之和。
最终,我们可以通过 cost[1][n] 来得到整棵树的最小代价。
具体的实现细节可以参考算法导论中的详细讲解。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)