Run the following code in your R console. states <- data.frame(state.region, state.x77) Draw a pie chart of mean land area with Percentages about west Northeast south and north central
时间: 2023-07-15 15:11:13 浏览: 102
Here's the code to create the pie chart you requested:
```
# Load required package
library(dplyr)
# Create data frame
states <- data.frame(state.region, state.x77)
# Calculate mean land area by region
mean_area <- states %>%
group_by(state.region) %>%
summarize(mean_area = mean(LandArea))
# Create pie chart
pie(mean_area$mean_area, labels = paste0(mean_area$state.region, ": ", round(mean_area$mean_area/sum(mean_area$mean_area)*100), "%"))
```
This will create a pie chart with percentages for the mean land area of each region. The labels will indicate which region corresponds to each slice of the pie chart.
相关问题
Run the following code in your R console. states <- data.frame(state.region, state.x77) Draw a Murder and non−negligent manslaughter rate per 100,000 population in Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The horizontal axis is Murder and non−negligent manslaughter rate and the vertical axis is these states And classify these states according to Northeast South central west on the vertical axis. Divide them into four parts in one picture
Here is the code to generate the plot you described:
```
# Load data
states <- data.frame(state.region, state.x77)
# Select states of interest
selected_states <- c("Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado", "Connecticut",
"Delaware", "Florida", "Georgia", "Hawaii", "Idaho", "Illinois", "Indiana", "Iowa",
"Kansas", "Kentucky", "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
"Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska", "Nevada", "New Hampshire",
"New Jersey", "New Mexico", "New York", "North Carolina", "North Dakota", "Ohio", "Oklahoma",
"Oregon", "Pennsylvania", "Rhode Island", "South Carolina", "South Dakota", "Tennessee",
"Texas", "Utah", "Vermont", "Virginia", "Washington", "West Virginia", "Wisconsin", "Wyoming")
states <- subset(states, rownames(states) %in% selected_states)
# Define color palette and region labels
colors <- c("red", "blue", "green", "orange")
regions <- c("Northeast", "South Central", "West", "Unknown")
# Create plot
plot(states$Murder, states$State, pch = 19, col = colors[states$state.region])
legend("topright", legend = regions, fill = colors, title = "Region")
abline(h = 1:length(selected_states), lty = "dotted", col = "grey")
```
And here is the resulting plot:

a=get_clust_tendency(scale(state.x77), nrow(state.x77)-1, graph = TRUE) #scale:对数据集进行标准化 a$hopkins_stat plot(a$plot)。绘制的图形里没有hopkins的值啊
您可以尝试使用以下代码来获取Hopkins统计量的值:
```
library(factoextra)
library(cluster)
data <- scale(state.x77)
hopkins_stat <- get_clust_tendency(data, nrow(data) - 1, graph = FALSE)$hopkins_stat
print(hopkins_stat)
```
这将输出Hopkins统计量的值。如果您想要在绘图中显示Hopkins统计量的值,可以使用以下代码:
```
library(factoextra)
library(cluster)
data <- scale(state.x77)
hopkins_stat <- get_clust_tendency(data, nrow(data) - 1, graph = TRUE)$hopkins_stat
plot(get_clust_tendency(data, nrow(data) - 1, graph = TRUE)$plot)
text(0.5, 0.8, paste("Hopkins statistic = ", round(hopkins_stat, 2)))
```
这将在绘图中显示Hopkins统计量的值。
阅读全文
相关推荐













