用R语言编写程序计算R中的数据集state.x77前6个变量之间的Pearson秩相关系数、Spearman等级相关系数、Kendall相关系数
时间: 2024-05-13 08:19:33 浏览: 178
可以使用以下代码计算state.x77前6个变量之间的Pearson秩相关系数、Spearman等级相关系数、Kendall相关系数:
```R
# 加载数据集state.x77
data(state.x77)
# 提取前6列数据
data <- state.x77[, 1:6]
# 计算Pearson秩相关系数
cor(data, method = "pearson")
# 计算Spearman等级相关系数
cor(data, method = "spearman")
# 计算Kendall相关系数
cor(data, method = "kendall")
```
其中,`cor()`函数用于计算相关系数,`method`参数用于指定计算的相关系数类型。结果将分别输出三种相关系数的计算结果。
相关问题
Run the following code in your R console. states <- data.frame(state.region, state.x77) Draw a Murder and non−negligent manslaughter rate per 100,000 population in Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The horizontal axis is Murder and non−negligent manslaughter rate and the vertical axis is Northeast:vemont rhode island Pennsylvania new York new jersey new Hampshire Massachusetts Maine Connecticut South: West Virginia Virginia Texas Tennessee South Carolina Oklahoma North Carolina Mississippi Maryland Louisiana Kentucky Georgia Florida Delaware Arkansas Alabama North Central: Wisconsin South Dakota Ohio North Dakota Nebraska Missouri Minnesota Michigan Kansas Iowa Indiana Illinois West: Wyoming Washington Utah Oregon New Mexico Nevada Montana Idaho Hawaii Colorado California Arizona Alaska And classify these states according to Northeast South central west on the vertical axis. Divide them into four parts in one picture
To draw a scatterplot with data points classified by region, we need to first add a region column to the `states` dataframe.
```
# Add region column to states dataframe
states$region <- ifelse(states$state.region == "Northeast", "Northeast",
ifelse(states$state.region %in% c("South", "South Atlantic", "East South Central", "West South Central"), "South Central",
ifelse(states$state.region %in% c("West", "Mountain", "Pacific"), "West", "North Central")))
```
Then, we can use the `ggplot2` package to create a scatterplot with points color-coded by region.
```
# Load ggplot2 package
library(ggplot2)
# Create scatterplot with points colored by region
ggplot(states, aes(x = Murder, y = state.x77.Population)) +
geom_point(aes(color = region)) +
scale_color_manual(values = c("Northeast" = "blue", "South Central" = "green", "West" = "red", "North Central" = "purple")) +
labs(title = "Murder and Non-Negligent Manslaughter Rate vs Population",
x = "Murder and Non-Negligent Manslaughter Rate (per 100,000 population)",
y = "Population")
```
This should produce a scatterplot with points colored by region, divided into four quadrants.
Note that some states may not be classified into the exact region they are in due to the way we defined the regions in the `ifelse` statement.
r语言中的哪些自带数据集是矩阵
R语言中有一些自带的数据集是矩阵,包括:
1. iris:鸢尾花数据集,包含150个样本和4个特征,可以被视为一个 $150\times 4$ 的矩阵;
2. mtcars:汽车数据集,包含32个样本和11个特征,可以被视为一个 $32\times 11$ 的矩阵;
3. state.x77:美国50个州的统计数据,包含8个特征,可以被视为一个 $50\times 8$ 的矩阵;
4. USArrests:美国每个州的犯罪数据,包含4个特征,可以被视为一个 $50\times 4$ 的矩阵。
这些数据集可以通过在 R 中输入数据集名称来直接访问。例如,要访问 iris 数据集,可以在 R 中输入以下命令:
```
data(iris)
```
这将加载 iris 数据集并将其存储为名为 iris 的数据框。要将这个数据框转换为矩阵,可以使用以下命令:
```
iris_matrix <- as.matrix(iris)
```
阅读全文