用matlab编制用Lagrange插值多项式和多项式拟合最小二乘法的方法计算经过三个数据点(1,2)、(-1,1)、(2,3)的抛物线和拟合三个数据点(1,2)、(-1,1)、(2,3)的抛物线的程序
时间: 2023-10-10 17:07:08 浏览: 246
%%% Lagrange插值多项式 %%%
% 三个数据点
x = [1 -1 2];
y = [2 1 3];
% 计算Lagrange插值多项式
syms t;
L1 = ((t+1)*(t-2))/((1+1)*(1-2)); % 对应x1=1
L2 = ((t-1)*(t-2))/((-1-1)*(-1-2)); % 对应x2=-1
L3 = ((t-1)*(t+1))/((2-1)*(2+1)); % 对应x3=2
L = L1*y(1) + L2*y(2) + L3*y(3); % 计算插值多项式
% 绘制插值结果
fplot(L,[-2,3]); % 绘制插值函数
hold on;
scatter(x,y,'filled'); % 绘制数据点
title('Lagrange插值多项式');
legend('插值函数','数据点');
%%% 多项式拟合最小二乘法 %%%
% 三个数据点
x = [1 -1 2];
y = [2 1 3];
% 构造矩阵
A = [ones(size(x))' x' x'.^2'];
b = y';
% 最小二乘法求解
p = (A'*A)\(A'*b);
% 计算拟合多项式
syms t;
P = p(1) + p(2)*t + p(3)*t^2;
% 绘制拟合结果
fplot(P,[-2,3]); % 绘制拟合函数
hold on;
scatter(x,y,'filled'); % 绘制数据点
title('多项式拟合最小二乘法');
legend('拟合函数','数据点');
相关问题
MATLAb中的lagrange插值法的例题实验结论
MATLAB中的Lagrange插值法是一种数值分析技术,用于估计给定数据点上的一次或多项式函数。它基于Lagrange基 polynomials 来构建一个函数,该函数通过给定的数据点精确地匹配那些点。
举个简单的例子,假设我们有两组数据点 (x1, y1) 和 (x2, y2),我们想要找到一条直线来近似这两点之间的关系。MATLAB 中可以使用 `linspace` 生成一系列的 x 值,然后用 `interp1` 函数进行拉格朗日插值:
```matlab
% 数据点
xData = [1 4]; % x 坐标
yData = [3 7]; % y 坐标
% 创建等间距的 x 值进行插值
xBasis = linspace(min(xData), max(xData), 100); % 例如,100 个点
% 使用 Lagrange 插值计算对应的 y 值
yInterpolated = interp1(xData, yData, xBasis, 'lagrange');
% 绘制原始数据点和插值线
plot(xData, yData, 'o', xBasis, yInterpolated)
xlabel('x')
ylabel('y')
title('Lagrange Interpolation Example')
```
实验结论通常包括:
1. 插值曲线能够很好地拟合给定的数据点,说明Lagrange插值法在这个简单示例中效果良好。
2. 随着插值点数增加,插值精度也随之提高,特别是在数据点密集区域。
3. 当数据点分布均匀时,插值结果相对稳定;如果数据点稀疏或分布不均,插值可能会有较大的误差。
Lagrange插值画图Matlab
以下是使用Matlab实现Lagrange插值的示例代码和结果:
```matlab
% 原函数
f = @(x) sin(x);
% 插值点
xi = [0, pi/2, pi];
yi = f(xi);
% 插值多项式
syms x;
L = 0;
for i = 1:length(xi)
li = 1;
for j = 1:length(xi)
if i ~= j
li = li * (x - xi(j)) / (xi(i) - xi(j));
end
end
L = L + yi(i) * li;
end
% 画图
x_range = linspace(-pi, 2*pi, 1000);
y_range = double(subs(L, x, x_range));
y_true = f(x_range);
plot(x_range, y_range, 'r-', x_range, y_true, 'b--', xi, yi, 'ko');
legend('插值多项式', '原函数', '插值点');
```
结果如下图所示:
![Lagrange插值](https://i.loli.net/2021/06/01/3Yj1MzCJfwtRv6Q.png)
可以看到,插值多项式能够很好地拟合原函数,并通过插值点。
阅读全文