if (!data_in) verilog

时间: 2024-05-15 17:13:05 浏览: 12
这段代码是一个条件语句,如果 `data_in` 为假,则执行 `verilog` 语句。在 Verilog 中,`verilog` 通常是一个模块实例化或者信号赋值等与硬件设计相关的语句。例如: ``` if (!data_in) begin // data_in 为 0,执行以下语句 module_inst my_module ( .clk(clk), .reset(reset), .data(data)); end ``` 这段代码表示当 `data_in` 为 0 时,实例化一个名为 `my_module` 的 Verilog 模块,并将该模块的输入端口 `clk`,`reset`,`data` 分别连接到当前模块的同名端口。
相关问题

给下列代码加注释和图形化界面module fifo #( parameter integer DWIDTH = 32, parameter integer AWIDTH = 4 ) ( input clock, reset, wr_en, rd_en, input [DWIDTH-1:0] data_in, output f_full, f_empty, output [DWIDTH-1:0] data_out ); reg [DWIDTH-1:0] mem [0:2**AWIDTH-1]; //parameter integer DEPTH = 1 << AWIDTH; //wire [DWIDTH-1:0] data_ram_out; //wire wr_en_ram; //wire rd_en_ram; reg [AWIDTH-1:0] wr_ptr; reg [AWIDTH-1:0] rd_ptr; reg [AWIDTH-1:0] counter; wire [AWIDTH-1:0] wr; wire [AWIDTH-1:0] rd; wire [AWIDTH-1:0] w_counter; //Write pointer always@(posedge clock) begin if (reset) begin wr_ptr <= {(AWIDTH){1'b0}}; end else if (wr_en && !f_full) begin mem[wr_ptr]<=data_in; wr_ptr <= wr; end end //Read pointer always@(posedge clock) begin if (reset) begin rd_ptr <= {(AWIDTH){1'b0}}; end else if (rd_en && !f_empty) begin rd_ptr <= rd; end end //Counter always@(posedge clock) begin if (reset) begin counter <= {(AWIDTH){1'b0}}; end else begin if (rd_en && !f_empty && !wr_en) begin counter <= w_counter; end else if (wr_en && !f_full && !rd_en) begin counter <= w_counter; end end end assign f_full = (counter == 4'd15)?1'b1:1'b0;//DEPTH- 1) ; assign f_empty = (counter == 4'd0)?1'b1:1'b0;//{AWIDTH{1'b0}}); assign wr = (wr_en && !f_full)?wr_ptr + 4'd1:wr_ptr + 4'd0; assign rd = (rd_en && !f_empty)?rd_ptr+ 4'd1:rd_ptr+ 4'd0; assign w_counter = (rd_en && !f_empty && !wr_en)? counter - 4'd1: (wr_en && !f_full && !rd_en)? counter + 4'd1: w_counter + 4'd0; //assign wr_en_ram = wr_en; //assign rd_en_ram = rd_en; assign data_out = mem[rd_ptr];//data_ram_out; /* dp_ram #(DWIDTH, AWIDTH) RAM_1 ( .clock(clock), .reset(reset), .wr_en(wr_en_ram), .rd_en(rd_en_ram), .data_in(data_in), .wr_addr(wr_ptr), .data_out(data_ram_out), .rd_addr(rd_ptr) ); */ endmodule

下面是对该FIFO模块的注释: ```verilog module fifo #( parameter integer DWIDTH = 32, parameter integer AWIDTH = 4 ) ( input clock, reset, wr_en, rd_en, input [DWIDTH-1:0] data_in, output f_full, f_empty, output [DWIDTH-1:0] data_out ); reg [DWIDTH-1:0] mem [0:2**AWIDTH-1]; // 声明一个深度为2**AWIDTH的寄存器数组,存储输入数据 reg [AWIDTH-1:0] wr_ptr; // 声明写指针,用于指向写入数据的位置 reg [AWIDTH-1:0] rd_ptr; // 声明读指针,用于指向读取数据的位置 reg [AWIDTH-1:0] counter; // 声明计数器,用于记录队列中的数据数量 wire [AWIDTH-1:0] wr; // 声明一个组合逻辑变量,用于计算写指针的值 wire [AWIDTH-1:0] rd; // 声明一个组合逻辑变量,用于计算读指针的值 wire [AWIDTH-1:0] w_counter; // 声明一个组合逻辑变量,用于计算计数器的值 // 写指针逻辑 always@(posedge clock) begin if (reset) begin wr_ptr <= {(AWIDTH){1'b0}}; // 初始化写指针为0 end else if (wr_en && !f_full) begin mem[wr_ptr] <= data_in; // 将输入数据存储到内存中 wr_ptr <= wr; // 更新写指针的值 end end // 读指针逻辑 always@(posedge clock) begin if (reset) begin rd_ptr <= {(AWIDTH){1'b0}}; // 初始化读指针为0 end else if (rd_en && !f_empty) begin rd_ptr <= rd; // 更新读指针的值 end end // 计数器逻辑 always@(posedge clock) begin if (reset) begin counter <= {(AWIDTH){1'b0}}; // 初始化计数器为0 end else begin if (rd_en && !f_empty && !wr_en) begin // 如果只有读操作,则计数器减1 counter <= w_counter; end else if (wr_en && !f_full && !rd_en) begin // 如果只有写操作,则计数器加1 counter <= w_counter; end end end assign f_full = (counter == 4'd15) ? 1'b1 : 1'b0; // 如果队列满了,则输出f_full assign f_empty = (counter == 4'd0) ? 1'b1 : 1'b0; // 如果队列为空,则输出f_empty assign wr = (wr_en && !f_full) ? wr_ptr + 4'd1 : wr_ptr + 4'd0; // 如果队列未满,则写指针+1 assign rd = (rd_en && !f_empty) ? rd_ptr + 4'd1 : rd_ptr + 4'd0; // 如果队列非空,则读指针+1 assign w_counter = (rd_en && !f_empty && !wr_en) ? counter - 4'd1 : // 如果只有读操作,则计数器减1 (wr_en && !f_full && !rd_en) ? counter + 4'd1 : // 如果只有写操作,则计数器加1 w_counter + 4'd0; // 如果既有读操作又有写操作,则计数器不变 assign data_out = mem[rd_ptr]; // 从内存中读取数据,并输出到data_out // RAM组件,用于存储数据,这里被注释掉了 /* dp_ram #(DWIDTH, AWIDTH) RAM_1 ( .clock(clock), .reset(reset), .wr_en(wr_en_ram), .rd_en(rd_en_ram), .data_in(data_in), .wr_addr(wr_ptr), .data_out(data_ram_out), .rd_addr(rd_ptr) ); */ endmodule ``` 由于该FIFO模块没有提供图形化界面,所以无法生成图形化界面展示。

always @(posedge clk)begin if(state==2'd3) begin if(!encode_data_in[7]) decode_data_out_r2<=~decode_data_out_r+1'b1; else decode_data_out_r2<=decode_data_out_r; end end

这是一段 Verilog HDL 代码,其功能是在时钟上升沿触发时,如果当前状态为3,且输入数据的第7位为0,则将输出数据取反加1,否则输出数据不变。具体实现是将输出数据存储在一个寄存器decode_data_out_r中,并在下一个时钟上升沿时更新为新的输出数据decode_data_out_r2。

相关推荐

module crc8( data_in, clk, rst_n, crc7, crc6, crc5, crc4, crc3, crc2, crc1, crc0 ); input wire data_in; input wire clk; input wire rst_n; output wire crc7; output wire crc6; output wire crc5; output wire crc4; output wire crc3; output wire crc2; output wire crc1; output wire crc0; wire SYNTHESIZED_WIRE_5; reg DFF_inst8; reg DFF_inst; wire SYNTHESIZED_WIRE_2; wire SYNTHESIZED_WIRE_3; reg DFF_inst3; reg DFF_inst4; reg DFF_inst5; reg DFF_inst6; reg DFF_inst7; reg DFF_inst2; assign crc7 = DFF_inst8; assign crc6 = DFF_inst7; assign crc5 = DFF_inst6; assign crc4 = DFF_inst5; assign crc3 = DFF_inst4; assign crc2 = DFF_inst3; assign crc1 = DFF_inst2; assign crc0 = DFF_inst; always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst <= 1; end else begin DFF_inst <= SYNTHESIZED_WIRE_5; end end assign SYNTHESIZED_WIRE_5 = data_in ^ DFF_inst8; assign SYNTHESIZED_WIRE_2 = SYNTHESIZED_WIRE_5 ^ DFF_inst; always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst2 <= 1; end else begin DFF_inst2 <= SYNTHESIZED_WIRE_2; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst3 <= 1; end else begin DFF_inst3 <= SYNTHESIZED_WIRE_3; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst4 <= 1; end else begin DFF_inst4 <= DFF_inst3; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst5 <= 1; end else begin DFF_inst5 <= DFF_inst4; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst6 <= 1; end else begin DFF_inst6 <= DFF_inst5; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst7 <= 1; end else begin DFF_inst7 <= DFF_inst6; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst8 <= 1; end else begin DFF_inst8 <= DFF_inst7; end end assign SYNTHESIZED_WIRE_3 = SYNTHESIZED_WIRE_5 ^ DFF_inst2; endmodule 把这个代码修改成CRC-12编码器

最新推荐

recommend-type

NexusSetup.exe是Nexus设备设置程序的执行文件

这款Windows Dock栏工具解决了窗口遮挡问题,支持将窗口最小化至Dock栏,相比mydock稳定性更好,而相比bitdock体积更小,是一款适中的优秀选择,值得推荐。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

某航天所智能制造实施方案(交付版).pptx

某航天所智能制造实施方案(交付版).pptx
recommend-type

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。.rar

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。
recommend-type

AI视觉智慧城管解决方案.pptx

AI视觉智慧城管解决方案.pptx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依