resnet+fpn
时间: 2023-08-06 17:05:39 浏览: 44
回答: ResNet+FPN是一种结合了ResNet和特征金字塔网络(FPN)的模型。ResNet是一种深层网络结构,通过使用Bottleneck模块来构建网络。Bottleneck模块在输入和输出之间添加了一个卷积层,用于扩展输入的通道数。ResNet的不同阶段(conv2_x, conv3_x, conv4_x, conv5_x)具有不同的尺寸和语义信息。而FPN的目的是实现更好的特征融合,通过将底层到高层的特征图进行融合,充分利用各个阶段提取到的特征。FPN的构建过程是通过取出在主干特征提取网络中不同阶段的结果来构造特征金字塔结构。P2-P5是用于预测物体的边界框(bbox)、边界框回归(box regression)和掩码(mask)的,而P2-P6则用于训练RPN(Region Proposal Network),其中P6只用于RPN网络中。通过结合ResNet和FPN,ResNet+FPN模型能够更好地融合多尺度的特征,提高物体检测和分割的性能。\[1\]\[2\]\[3\]
#### 引用[.reference_title]
- *1* *2* *3* [ResNet+ FPN网络结构](https://blog.csdn.net/weixin_43937959/article/details/122489181)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关推荐

















