C++实现P命令
时间: 2023-06-29 15:19:29 浏览: 111
P命令一般指的是Linux系统下的ps命令,可以通过C++的system函数调用ps命令来实现。
```c++
#include <cstdlib>
#include <iostream>
int main() {
std::system("ps");
return 0;
}
```
该程序中,使用`std::system`函数调用了ps命令,并将其输出到控制台。你可以根据自己的需要修改命令行参数来调用不同的ps命令选项。
需要注意的是,该程序只能在Linux系统下运行,Windows系统下没有ps命令。如果需要在Windows系统下获取进程信息,可以使用Windows提供的API函数来实现。
相关问题
c++实现 linux 命令 pmap [-x -X] 的功能
可以使用 C++ 中的文件流和字符串处理库来实现 pmap 命令的功能。具体实现步骤如下:
1. 打开 /proc/[pid]/maps 文件,其中 pid 为进程号,该文件记录了进程的内存映射情况。
2. 逐行读取文件内容,使用字符串分割函数将每行内容按空格分割为多个字符串。
3. 解析字符串数组,获取每个内存区域的起始地址、结束地址、权限等信息。
4. 根据选项 -x 和 -X,以不同的格式输出内存地址。
以下是一个简单的实现示例:
```c++
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <cstring>
using namespace std;
void print_usage() {
cout << "Usage: pmap [-x|-X] <pid>" << endl;
}
string read_proc_maps(int pid) {
stringstream ss;
ss << "/proc/" << pid << "/maps";
string filename = ss.str();
ifstream fin(filename);
if (!fin.is_open()) {
cerr << "Failed to open file " << filename << endl;
exit(EXIT_FAILURE);
}
stringstream buffer;
buffer << fin.rdbuf();
fin.close();
return buffer.str();
}
void print_address(string addr, string perm, string offset, string path, bool xflag, bool Xflag) {
stringstream ss;
unsigned long long addr_val;
ss << hex << addr;
ss >> addr_val;
if (xflag) {
cout << setw(16) << setfill('0') << hex << addr_val << " " << path << endl;
} else if (Xflag) {
string symbol = "";
char cmd[1024];
sprintf(cmd, "addr2line -e /proc/%d/exe 0x%s | sed -n '2p' | awk '{print $2}'", getpid(), addr.c_str());
FILE* fp = popen(cmd, "r");
if (fp) {
char buffer[1024];
if (fgets(buffer, sizeof(buffer), fp)) {
symbol = buffer;
symbol = symbol.substr(0, symbol.size() - 1);
}
pclose(fp);
}
cout << setw(16) << setfill('0') << hex << addr_val << " " << setw(30) << setfill(' ') << left << symbol << path << endl;
} else {
cout << addr << " " << perm << " " << offset << " " << path << endl;
}
}
int main(int argc, char** argv) {
if (argc < 2) {
print_usage();
return EXIT_FAILURE;
}
bool xflag = false;
bool Xflag = false;
int pid;
if (strcmp(argv[1], "-x") == 0) {
xflag = true;
pid = atoi(argv[2]);
} else if (strcmp(argv[1], "-X") == 0) {
Xflag = true;
pid = atoi(argv[2]);
} else {
pid = atoi(argv[1]);
}
string content = read_proc_maps(pid);
stringstream ss(content);
string line;
while (getline(ss, line)) {
string addr, perm, offset, device, inode, path;
istringstream iss(line);
iss >> addr >> perm >> offset >> device >> inode;
getline(iss, path);
print_address(addr, perm, offset, path, xflag, Xflag);
}
return EXIT_SUCCESS;
}
```
可以在命令行中执行以下命令来测试该程序的功能:
```bash
./pmap <pid> # 显示进程的内存映射情况
./pmap -x <pid> # 以十六进制显示地址
./pmap -X <pid> # 以十六进制及符号名称的形式显示地址
```
使用c++实现sift算法
SIFT算法是一种基于图像特征点的局部特征描述算法,它可以在不同尺度和旋转下提取稳定的特征点,并对特征点进行描述。下面是一个简单的SIFT算法的实现,使用OpenCV库来处理图像。
首先,需要安装OpenCV库。可以使用以下命令在Ubuntu上安装:
```
sudo apt-get install libopencv-dev
```
接下来,我们就可以开始编写SIFT算法的实现了。以下是主要步骤:
1. 读取图像并转换为灰度图像。
2. 计算高斯金字塔。
3. 计算差分金字塔。
4. 寻找极值点。
5. 对极值点进行剔除和筛选。
6. 计算特征点的方向。
7. 计算特征点的描述符。
下面是代码实现:
```
#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>
#include <cmath>
using namespace cv;
using namespace std;
// 高斯函数
double Gaussian(double x, double y, double sigma) {
double res = exp(-(x * x + y * y) / (2 * sigma * sigma));
return res;
}
// 计算高斯核
Mat getGaussianKernel(int size, double sigma) {
Mat kernel(size, size, CV_64FC1);
int center = size / 2;
double sum = 0.0;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
double x = i - center;
double y = j - center;
kernel.at<double>(i, j) = Gaussian(x, y, sigma);
sum += kernel.at<double>(i, j);
}
}
kernel /= sum;
return kernel;
}
// 计算高斯金字塔
vector<vector<Mat>> getGaussianPyramid(Mat img, int octaves, int levels) {
vector<vector<Mat>> pyramid(octaves, vector<Mat>(levels));
double k = pow(2, 1.0 / levels);
for (int i = 0; i < octaves; i++) {
Mat down = img.clone();
for (int j = 0; j < levels; j++) {
if (i == 0 && j == 0) {
pyramid[i][j] = down;
} else if (j == 0) {
pyrDown(down, pyramid[i][j]);
} else {
int size = pow(k, j - 1) * down.cols;
Size s(size, size);
pyrDown(down, down, s);
pyrUp(down, pyramid[i][j], s);
}
}
int size = down.cols / 2;
Size s(size, size);
pyrDown(down, down, s);
img = down;
}
return pyramid;
}
// 计算差分金字塔
vector<vector<Mat>> getDifferencePyramid(vector<vector<Mat>> pyramid) {
vector<vector<Mat>> pyramid_diff(pyramid.size(), vector<Mat>(pyramid[0].size() - 1));
for (int i = 0; i < pyramid.size(); i++) {
for (int j = 0; j < pyramid[i].size() - 1; j++) {
Mat diff = pyramid[i][j + 1] - pyramid[i][j];
pyramid_diff[i][j] = diff;
}
}
return pyramid_diff;
}
// 判断是否为极值点
bool isExtremum(Mat A, Mat B, Mat C, int x, int y) {
double value = B.at<double>(x, y);
if (value > 0) {
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
for (int k = -1; k <= 1; k++) {
if (i == 0 && j == 0 && k == 0) {
continue;
}
if (value <= A.at<double>(x + i, y + j) ||
value <= B.at<double>(x + i, y + j) ||
value <= C.at<double>(x + i, y + j)) {
return false;
}
}
}
}
return true;
} else {
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
for (int k = -1; k <= 1; k++) {
if (i == 0 && j == 0 && k == 0) {
continue;
}
if (value >= A.at<double>(x + i, y + j) ||
value >= B.at<double>(x + i, y + j) ||
value >= C.at<double>(x + i, y + j)) {
return false;
}
}
}
}
return true;
}
}
// 找到极值点
vector<KeyPoint> findExtrema(vector<vector<Mat>> pyramid_diff) {
vector<KeyPoint> keypoints;
for (int i = 0; i < pyramid_diff.size(); i++) {
for (int j = 1; j < pyramid_diff[i].size() - 1; j++) {
Mat A = pyramid_diff[i][j - 1];
Mat B = pyramid_diff[i][j];
Mat C = pyramid_diff[i][j + 1];
for (int x = 1; x < B.rows - 1; x++) {
for (int y = 1; y < B.cols - 1; y++) {
if (isExtremum(A, B, C, x, y)) {
KeyPoint kp(y * pow(2, i), x * pow(2, i), pow(2, j), -1, 0, i);
keypoints.push_back(kp);
}
}
}
}
}
return keypoints;
}
// 计算特征点的方向
void computeOrientation(Mat img, KeyPoint& kp, int bins, double sigma) {
double angleStep = 2 * M_PI / bins;
Mat kernel = getGaussianKernel(1 + 2 * ceil(2.5 * sigma), sigma);
vector<double> hist(bins);
double maxVal = 0;
int maxIndex = -1;
for (int i = 0; i < bins; i++) {
hist[i] = 0;
for (int x = -1; x <= 1; x++) {
for (int y = -1; y <= 1; y++) {
int px = round(kp.pt.y) + x;
int py = round(kp.pt.x) + y;
if (px >= 0 && px < img.rows && py >= 0 && py < img.cols) {
double dx = img.at<double>(px, py + 1) - img.at<double>(px, py - 1);
double dy = img.at<double>(px - 1, py) - img.at<double>(px + 1, py);
double mag = sqrt(dx * dx + dy * dy);
double angle = atan2(dy, dx);
if (angle < 0) {
angle += 2 * M_PI;
}
int binIndex = floor(angle / angleStep);
hist[binIndex] += mag * kernel.at<double>(y + 1, x + 1);
}
}
}
if (hist[i] > maxVal) {
maxVal = hist[i];
maxIndex = i;
}
}
double left = hist[(maxIndex - 1 + bins) % bins];
double right = hist[(maxIndex + 1) % bins];
double peak = maxVal / (left + right + maxVal);
kp.angle = maxIndex * angleStep;
kp.size /= 2.0;
}
// 计算特征点的描述符
Mat computeDescriptor(Mat img, KeyPoint kp, int bins, double sigma) {
Mat descriptor(bins, bins, CV_64FC1);
double angleStep = 2 * M_PI / bins;
Mat kernel = getGaussianKernel(1 + 2 * ceil(2.5 * sigma), sigma);
double dx[bins], dy[bins];
for (int i = 0; i < bins; i++) {
dx[i] = cos(i * angleStep);
dy[i] = sin(i * angleStep);
}
for (int i = -bins / 2; i < bins / 2; i++) {
for (int j = -bins / 2; j < bins / 2; j++) {
double hist[bins];
for (int k = 0; k < bins; k++) {
hist[k] = 0;
}
for (int x = -2; x <= 1; x++) {
for (int y = -2; y <= 1; y++) {
int px = round(kp.pt.y + i * kp.size / bins) + x;
int py = round(kp.pt.x + j * kp.size / bins) + y;
if (px >= 0 && px < img.rows && py >= 0 && py < img.cols) {
double dx_p = img.at<double>(px, py + 1) - img.at<double>(px, py - 1);
double dy_p = img.at<double>(px - 1, py) - img.at<double>(px + 1, py);
double mag = sqrt(dx_p * dx_p + dy_p * dy_p);
double angle = atan2(dy_p, dx_p);
if (angle < 0) {
angle += 2 * M_PI;
}
int binIndex = floor(angle / angleStep);
double weight = kernel.at<double>(y + 2, x + 2) * mag;
hist[binIndex] += weight;
}
}
}
for (int k = 0; k < bins; k++) {
descriptor.at<double>(i + bins / 2, j + bins / 2) += hist[k] * dx[k];
descriptor.at<double>(i + bins / 2, j + bins / 2) += hist[k] * dy[k];
}
}
}
normalize(descriptor, descriptor, 1, 0, NORM_L2);
return descriptor;
}
// 主函数
int main(int argc, char** argv) {
Mat img = imread(argv[1], IMREAD_GRAYSCALE);
if (img.empty()) {
cout << "Can't read image" << endl;
return -1;
}
img.convertTo(img, CV_64FC1);
vector<vector<Mat>> pyramid = getGaussianPyramid(img, 4, 5);
vector<vector<Mat>> pyramid_diff = getDifferencePyramid(pyramid);
vector<KeyPoint> keypoints = findExtrema(pyramid_diff);
for (int i = 0; i < keypoints.size(); i++) {
computeOrientation(pyramid[keypoints[i].octave][keypoints[i].level], keypoints[i], 8, 1.5);
Mat descriptor = computeDescriptor(pyramid[keypoints[i].octave][keypoints[i].level], keypoints[i], 4, 1.5);
keypoints[i].response = descriptor.at<double>(1, 1);
}
Mat result;
drawKeypoints(img, keypoints, result);
imshow("SIFT keypoints", result);
waitKey(0);
return 0;
}
```
注意,此代码仅供参考,可能需要根据具体情况进行修改和优化。