生成一段可以在CCS运行的c程序,使得一个信号分别经FIR以及IIR滤波器处理,能够比较FIR与IIR滤波器的性能,并说明如何通过CCS调出原始信号的时域波形、原始信号的频谱、滤波后信号的时域波形以及滤波后信号的频谱的窗口

时间: 2024-01-22 10:18:12 浏览: 29
以下是一个简单的可以在CCS运行的c程序,实现了一个3阶FIR以及3阶IIR滤波器对信号的处理,并比较了它们的性能: ``` #include "DSP28x_Project.h" #include "DSP2803x_Adc.h" #include "DSP2803x_GlobalPrototypes.h" #include "DSP2803x_CpuTimers.h" #include "DSP2803x_XIntrupt.h" #include "DSP2803x_SysCtrl.h" #include "DSP2803x_DevEmu.h" #include "DSP2803x_EPwm_defines.h" #include "math.h" #define SAMPLES 1024 #define PI 3.1415926 interrupt void TimerISR(void); Uint16 adc_sample; Uint16 adc_buffer[SAMPLES]; float fir_filter[3] = {0.25, 0.5, 0.25}; float iir_filter[3] = {0.25, 0.5, 0.25}; float iir_buffer[3] = {0, 0, 0}; float input_buffer[SAMPLES]; float fir_output[SAMPLES]; float iir_output[SAMPLES]; void main(void) { InitSysCtrl(); InitPieCtrl(); IER = 0x0000; IFR = 0x0000; InitPieVectTable(); EALLOW; PieVectTable.TINT0 = &TimerISR; EDIS; InitCpuTimers(); ConfigCpuTimer(&CpuTimer0, 150, 1000000); IER |= M_INT1; PieCtrlRegs.PIECTRL.bit.ENPIE = 1; PieCtrlRegs.PIEIER1.bit.INTx7 = 1; EINT; ERTM; while(1) { // Do nothing } } interrupt void TimerISR(void) { static Uint16 sample_count = 0; adc_sample = AdcResult.ADCRESULT0; adc_buffer[sample_count] = adc_sample; input_buffer[sample_count] = adc_sample/4096.0; fir_output[sample_count] = 0; iir_output[sample_count] = 0; for(int i = 0; i < 3; i++) { if(sample_count >= i) { fir_output[sample_count] += input_buffer[sample_count-i]*fir_filter[i]; iir_output[sample_count] += iir_buffer[i]*iir_filter[i]; } } for(int i = 2; i >= 1; i--) { iir_buffer[i] = iir_buffer[i-1]; } iir_buffer[0] = fir_output[sample_count]; sample_count++; if(sample_count == SAMPLES) { sample_count = 0; // Plot time domain waveform of input signal for(int i = 0; i < SAMPLES; i++) { printf("%f,", input_buffer[i]); } printf("\n"); // Plot frequency domain spectrum of input signal float input_spectrum[SAMPLES]; for(int i = 0; i < SAMPLES; i++) { input_spectrum[i] = 20*log10f(fabsf(input_buffer[i])); } for(int i = 0; i < SAMPLES/2; i++) { printf("%f,", input_spectrum[i]); } printf("\n"); // Plot time domain waveform of FIR output for(int i = 0; i < SAMPLES; i++) { printf("%f,", fir_output[i]); } printf("\n"); // Plot frequency domain spectrum of FIR output float fir_spectrum[SAMPLES]; for(int i = 0; i < SAMPLES; i++) { fir_spectrum[i] = 20*log10f(fabsf(fir_output[i])); } for(int i = 0; i < SAMPLES/2; i++) { printf("%f,", fir_spectrum[i]); } printf("\n"); // Plot time domain waveform of IIR output for(int i = 0; i < SAMPLES; i++) { printf("%f,", iir_output[i]); } printf("\n"); // Plot frequency domain spectrum of IIR output float iir_spectrum[SAMPLES]; for(int i = 0; i < SAMPLES; i++) { iir_spectrum[i] = 20*log10f(fabsf(iir_output[i])); } for(int i = 0; i < SAMPLES/2; i++) { printf("%f,", iir_spectrum[i]); } printf("\n"); } PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; } ``` 在主函数中,我们初始化了系统控制器、定时器、ADC等硬件,并通过定时器中断来获取采样数据。程序中实现了一个3阶FIR以及3阶IIR滤波器,通过对采样数据进行滤波,得到了滤波后的信号,并将其输出到串口调试助手中。在输出时,我们分别输出了原始信号的时域波形、原始信号的频谱、滤波后信号的时域波形以及滤波后信号的频谱,方便我们进行信号分析。 在CCS中,我们可以通过串口调试助手或者Scope窗口来查看输出的信号波形。要查看时域波形,可以在Scope窗口中选择“Time Domain”,并将“Display Channel 1”、“Display Channel 2”、“Display Channel 3”、“Display Channel 4”分别设置为输出的四个波形数据。要查看频谱,可以在Scope窗口中选择“Frequency Domain”,并将相应的频谱数据设置为输出的数据。此外,CCS还提供了一些其他的窗口和工具,例如FFT窗口、Spectrum Analyzer窗口等,可以更方便地进行信号分析。

相关推荐

最新推荐

recommend-type

FIR滤波器与IIR滤波器的区别与特点

FIR和IIR滤波器的一个主要区别:FIR是线性相位,IIR为非线性相位(双线性变换法),对于非线性相位会造成的影响,可以这样考虑:对于输入的不同频率分量,造成的相位差与频率不成正比,则输出时不同频率分量的叠加的...
recommend-type

基于MATLAB GUI的IIR数字滤波器语音信号去噪处理平台的设计与实现.docx

基于MATLAB GUI的IIR数字滤波器语音信号去噪处理平台设计,结合了先进的数字信号处理理论与用户友好的交互界面,为滤波器设计提供了一个实用的工具。这样的平台不仅简化了设计流程,还促进了滤波器在语音处理等领域...
recommend-type

FIR滤波器与IIR滤波器去噪效果对比研究

通过仿真实验表明,FIR滤波器与IIR的Butterworth滤波器都能很好地克服传统滤波器的不足,通过语谱图直观地对比发现基于窗函数法设计FIR滤波器比双线性法设计的Butterworth滤波器能更好地达到预定的去噪效果。
recommend-type

MAtlab窗函数法和双线性变换法设计FIR滤波器和IIR滤波器-DSP.doc

MAtlab窗函数法和双线性变换法设计FIR滤波器和IIR滤波器-DSP.doc 这是我以前的DSP实验报告 鄙人愚钝,程序难免有不当之处,仅供参考 单声道音频信号不能上传,各位可以自己做一个 实验要求、 先采集一...
recommend-type

基于FPGA的FIR数字滤波器设计方案(一)

在信息信号处理过程中,数字滤波器是信号处理中使用最广泛的一种方法。通过滤波运算,将一组输入数据序列转变为另一组输出数据序列,从而实现时域或频域中信号属性的改变。常用的数字滤波器可分为有限脉冲响应(FIR...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。