基于python代码,实现500个节点进行随机多项式,计算运行时间和所占内存,然后将节点基于位置的分配分区之后,再次计算得出时间和内存的对比结果,并绘图
时间: 2024-02-28 15:53:43 浏览: 68
以下是基于 Python 的实现,用于生成随机多项式并计算运行时间和所占内存,并进行基于位置的分配分区后再次计算得出时间和内存的对比结果,并绘图。
```python
import random
import time
import psutil
import matplotlib.pyplot as plt
# 生成随机多项式,n 为节点数量
def generate_polynomial(n):
polynomial = []
for i in range(n):
coefficient = random.randint(-100, 100)
exponent = random.randint(0, 10)
polynomial.append((coefficient, exponent))
return polynomial
# 计算多项式的值,x 为变量值,polynomial 为多项式
def calculate_polynomial(x, polynomial):
result = 0
for term in polynomial:
result += term[0] * x ** term[1]
return result
# 计算运行时间和所占内存,n 为节点数量
def calculate_time_and_memory(n):
polynomial = generate_polynomial(n)
x = random.randint(-100, 100)
start_time = time.time()
result = calculate_polynomial(x, polynomial)
end_time = time.time()
memory_usage = psutil.Process().memory_info().rss
return end_time - start_time, memory_usage
# 基于位置的分配分区,n 为节点数量,m 为区域数量
def partition_by_position(n, m):
partition_size = n // m
partitions = []
for i in range(m):
start_index = i * partition_size
end_index = (i + 1) * partition_size if i < m - 1 else n
partitions.append((start_index, end_index))
return partitions
# 计算基于位置的分配分区后的运行时间和所占内存,n 为节点数量,m 为区域数量
def calculate_time_and_memory_with_partition(n, m):
polynomial = generate_polynomial(n)
x = random.randint(-100, 100)
partitions = partition_by_position(n, m)
start_time = time.time()
result = 0
for partition in partitions:
result += calculate_polynomial(x, polynomial[partition[0]:partition[1]])
end_time = time.time()
memory_usage = psutil.Process().memory_info().rss
return end_time - start_time, memory_usage
# 绘制运行时间和内存对比图,x 为节点数量列表,y1 为非分区运行时间列表,y2 为分区运行时间列表,y3 为非分区内存列表,y4 为分区内存列表
def plot_comparison(x, y1, y2, y3, y4):
plt.figure()
plt.subplot(2, 1, 1)
plt.plot(x, y1, label='Without Partition')
plt.plot(x, y2, label='With Partition')
plt.title('Time Comparison')
plt.xlabel('Number of Nodes')
plt.ylabel('Time (s)')
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(x, y3, label='Without Partition')
plt.plot(x, y4, label='With Partition')
plt.title('Memory Comparison')
plt.xlabel('Number of Nodes')
plt.ylabel('Memory Usage (bytes)')
plt.legend()
plt.show()
# 测试
node_counts = [10, 50, 100, 200, 300, 400, 500]
partition_count = 5
without_partition_times = []
with_partition_times = []
without_partition_memories = []
with_partition_memories = []
for n in node_counts:
t1, m1 = calculate_time_and_memory(n)
t2, m2 = calculate_time_and_memory_with_partition(n, partition_count)
without_partition_times.append(t1)
with_partition_times.append(t2)
without_partition_memories.append(m1)
with_partition_memories.append(m2)
plot_comparison(node_counts, without_partition_times, with_partition_times, without_partition_memories, with_partition_memories)
```
该实现根据节点数量列表 `node_counts` 生成随机多项式,并分别计算非分区和分区的运行时间和所占内存,然后绘制运行时间和内存的对比图。在测试中,节点数量从10到500,分区数量为5。可以通过修改这些参数来测试不同的情况。
阅读全文