在excel使用pandas,根据表B中的“剔除科目”剔除表A中“费用名称”中相同类别
时间: 2024-03-05 18:49:57 浏览: 61
可以使用pandas的merge函数实现这一需求。首先,读取表A和表B的数据,并以“剔除科目”作为关键字,将两张表合并为一张新表。然后,使用新表中的“费用名称”列中的值筛选出需要保留的行,并将其保存为新的数据框。最后,将新的数据框保存为excel文件即可。
以下是示例代码:
``` python
import pandas as pd
# 读取表A和表B的数据
df_a = pd.read_excel('A.xlsx')
df_b = pd.read_excel('B.xlsx')
# 将两张表合并为一张新表
new_df = pd.merge(df_a, df_b, on='剔除科目')
# 筛选出需要保留的行
filtered_df = new_df[~new_df['费用名称'].str.contains(new_df['类别'])]
# 将筛选后的结果保存为excel文件
filtered_df.to_excel('new_A.xlsx', index=False)
```
需要注意的是,这里假设表B中的“剔除科目”和表A中的“剔除科目”完全相同,如果存在不同的情况,需要进行相应的调整。
相关问题
在excel使用pandas,根据表B中的“剔除科目”剔除表A中“费用名称”中名称相同的
可以使用pandas的merge函数和drop_duplicates函数实现这一需求。首先,读取表A和表B的数据,并以“剔除科目”作为关键字,将两张表合并为一张新表。然后,使用新表中的“费用名称”列中的值进行去重,去除相同的行,并将其保存为新的数据框。最后,将新的数据框保存为excel文件即可。
以下是示例代码:
``` python
import pandas as pd
# 读取表A和表B的数据
df_a = pd.read_excel('A.xlsx')
df_b = pd.read_excel('B.xlsx')
# 将两张表合并为一张新表
new_df = pd.merge(df_a, df_b, on='剔除科目')
# 去除相同的行
filtered_df = new_df.drop_duplicates(subset=['费用名称'])
# 将筛选后的结果保存为excel文件
filtered_df.to_excel('new_A.xlsx', index=False)
```
需要注意的是,这里假设表B中的“剔除科目”和表A中的“剔除科目”完全相同,如果存在不同的情况,需要进行相应的调整。另外,如果需要保留重复的行,可以使用drop_duplicates函数的keep参数进行设置。
在excel使用pandas,根据表B,移除表A中“费用名称”中与表B“剔除科目”的名称相同的所有行
可以使用pandas的merge函数和isin函数实现这一需求。首先,读取表A和表B的数据,并将表B中的“剔除科目”列的值存储为列表。然后,使用isin函数筛选出表A中的“费用名称”列中不包含在列表中的行,并将其保存为新的数据框。最后,将新的数据框保存为excel文件即可。
以下是示例代码:
``` python
import pandas as pd
# 读取表A和表B的数据
df_a = pd.read_excel('A.xlsx')
df_b = pd.read_excel('B.xlsx')
# 将表B中的“剔除科目”列的值存储为列表
exclude_list = df_b['剔除科目'].tolist()
# 使用isin函数筛选出表A中的“费用名称”列中不包含在列表中的行
filtered_df = df_a[~df_a['费用名称'].isin(exclude_list)]
# 将筛选后的结果保存为excel文件
filtered_df.to_excel('new_A.xlsx', index=False)
```
需要注意的是,这里假设表B中的“剔除科目”和表A中的“剔除科目”完全相同,如果存在不同的情况,需要进行相应的调整。另外,如果需要保留重复的行,可以在筛选函数中设置keep参数。
阅读全文