用Python实现nms
时间: 2024-11-09 17:23:26 浏览: 14
非极大抑制(Non-Maximum Suppression, NMS)是一种常用的算法,用于处理物体检测任务中的重叠边界框问题。下面是一个简单的NMS在Python中的实现步骤[^1]:
1. **导入必要的库**:
```python
import numpy as np
```
2. **创建一组边界框** (假设每个边界框由左上角坐标、右下角坐标和置信度组成):
```python
boxes = np.array([[100,100,210,210,0.72], [250,250,420,420,0.8], [220,220,320,330,0.92],
[100,100,210,210,0.72], [230,240,325,330,0.81], [220,230,315,340,0.9]])
```
3. **定义NMS函数**:
```python
def non_max_suppression(boxes, iou_threshold=0.5):
indices = np.argsort(-boxes[:, -1]) # 按置信度降序排列
suppressed = set()
nms_boxes = []
while len(indices) > 0:
last_index = indices[0]
nms_boxes.append(boxes[last_index])
# 如果最后一个元素已经抑制过其他元素,则移除
if last_index in suppressed:
indices = indices[1:]
continue
current_box_area = (boxes[last_index, 2] - boxes[last_index, 0]) * (boxes[last_index, 3] - boxes[last_index, 1])
# 计算IoU
overlap = compute_iou(boxes[last_index], boxes[indices[1:]]) # 假设compute_iou函数已存在
# 抑制IoU大于阈值的框
indices = indices[1:].tolist()
indices = [i for i, j in enumerate(indices) if overlap[i] < iou_threshold]
# 添加到抑制集合
suppressed.add(last_index)
suppressed.update(indices)
return np.array(nms_boxes)
```
在这个示例中,`compute_iou`是一个计算两个边界框之间IoU(Intersection over Union)的函数,它不是直接给出的,但通常它是通过计算交集面积除以并集面积来实现的。
阅读全文