Epoch 20/20 35/35 [==============================] - 2s 50ms/step - loss: 3.3574e-04 - accuracy: 9.1870e-04 - val_loss: 8.7506e-04

时间: 2023-09-09 13:06:18 浏览: 32
这是一个深度学习模型的训练日志,其中Epoch 20/20表示模型已经训练了20个epoch(迭代轮数),35/35 [==============================]表示当前epoch的训练进度,loss: 3.3574e-04表示当前epoch的训练损失值,accuracy: 9.1870e-04表示当前epoch的训练准确率,val_loss: 8.7506e-04表示当前epoch的验证集上的损失值。训练损失值和验证集损失值都越小,表示模型的性能越好。
相关问题

config configs/culane.py

这是一个CULane数据集的配置文件,其中包含了训练、验证和测试的相关参数设置。 ``` _base_ = [ '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/culane.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] # model settings model = dict( decode_head=dict(num_classes=5), auxiliary_head=dict(num_classes=5)) # dataset settings data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict(type='CULane', split='train'), val=dict(type='CULane', split='val'), test=dict(type='CULane', split='test')) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict(policy='poly', power=0.9, by_epoch=False) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=160) checkpoint_config = dict(by_epoch=False, interval=20) evaluation = dict(interval=20, metric='mIoU') ``` 其中: - `_base_` 表示使用的基础配置文件,这里使用了模型、数据集、运行时设置和学习率调度等基础配置文件。 - `model` 表示模型相关的设置,这里使用 FCN-R50-d8 作为基础模型,decode_head 和 auxiliary_head 都设置为 5 类别(即 5 条车道线)。 - `data` 表示数据集相关的设置,包括每个 GPU 用来训练的样本数、数据集划分方式等。 - `optimizer` 和 `optimizer_config` 表示优化器相关的设置,这里使用 SGD 优化器,设置了学习率、动量和权重衰减等参数。 - `lr_config` 表示学习率调度的设置,这里使用了 Poly 调度,设置了幂次和是否按 epoch 计算。 - `runner` 表示训练器相关的设置,这里使用了 EpochBasedRunner,并且设置了最大训练轮数。 - `checkpoint_config` 表示保存模型参数的设置,这里设置了每 20 轮保存一次模型,并且不按 epoch 计算。 - `evaluation` 表示验证时的评估设置,这里设置了每 20 轮进行一次验证,并且使用 mIoU 作为评估指标。

import torchimport torch.nn as nnimport torch.optim as optimimport numpy as np# 定义视频特征提取模型class VideoFeatureExtractor(nn.Module): def __init__(self): super(VideoFeatureExtractor, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) return x# 定义推荐模型class VideoRecommendationModel(nn.Module): def __init__(self, num_videos, embedding_dim): super(VideoRecommendationModel, self).__init__() self.video_embedding = nn.Embedding(num_videos, embedding_dim) self.user_embedding = nn.Embedding(num_users, embedding_dim) self.fc1 = nn.Linear(2 * embedding_dim, 64) self.fc2 = nn.Linear(64, 1) def forward(self, user_ids, video_ids): user_embed = self.user_embedding(user_ids) video_embed = self.video_embedding(video_ids) x = torch.cat([user_embed, video_embed], dim=1) x = torch.relu(self.fc1(x)) x = self.fc2(x) return torch.sigmoid(x)# 加载数据data = np.load('video_data.npy')num_users, num_videos, embedding_dim = data.shapetrain_data = torch.tensor(data[:int(0.8 * num_users)])test_data = torch.tensor(data[int(0.8 * num_users):])# 定义模型和优化器feature_extractor = VideoFeatureExtractor()recommendation_model = VideoRecommendationModel(num_videos, embedding_dim)optimizer = optim.Adam(recommendation_model.parameters())# 训练模型for epoch in range(10): for user_ids, video_ids, ratings in train_data: optimizer.zero_grad() video_features = feature_extractor(video_ids) ratings_pred = recommendation_model(user_ids, video_ids) loss = nn.BCELoss()(ratings_pred, ratings) loss.backward() optimizer.step() # 计算测试集准确率 test_ratings_pred = recommendation_model(test_data[:, 0], test_data[:, 1]) test_loss = nn.BCELoss()(test_ratings_pred, test_data[:, 2]) test_accuracy = ((test_ratings_pred > 0.5).float() == test_data[:, 2]).float().mean() print('Epoch %d: Test Loss %.4f, Test Accuracy %.4f' % (epoch, test_loss.item(), test_accuracy.item()))解释每一行代码

1. `import torch`: 导入 PyTorch 模块 2. `import torch.nn as nn`: 导入 PyTorch 中的神经网络模块 3. `import torch.optim as optim`: 导入 PyTorch 中的优化器模块 4. `import numpy as np`: 导入 NumPy 模块,并将其重命名为 np 5. `class VideoFeatureExtractor(nn.Module):`:定义视频特征提取模型,继承自 nn.Module 6. `def __init__(self):`:定义初始化函数,初始化视频特征提取模型中的卷积层和池化层 7. `super(VideoFeatureExtractor, self).__init__()`: 调用父类的初始化函数 8. `self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)`: 定义一个 3 x 3 的卷积层,输入通道数为 3 ,输出通道数为 16,卷积核大小为 3,步长为 1,填充为 1 9. `self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)`: 定义一个 3 x 3 的卷积层,输入通道数为 16 ,输出通道数为 32,卷积核大小为 3,步长为 1,填充为 1 10. `self.pool = nn.MaxPool2d(kernel_size=2, stride=2)`: 定义一个大小为 2x2 的最大池化层 11. `def forward(self, x):`: 定义前向传播函数,将输入 x 经过卷积层和池化层后展平输出 12. `x = self.pool(torch.relu(self.conv1(x)))`: 将输入 x 经过第一层卷积层、ReLU 激活函数和最大池化层 13. `x = self.pool(torch.relu(self.conv2(x)))`: 将输入 x 经过第二层卷积层、ReLU 激活函数和最大池化层 14. `x = x.view(-1, 32 * 8 * 8)`: 将输出结果展平为一维向量,大小为 32*8*8 15. `return x`: 返回输出结果 x 16. `class VideoRecommendationModel(nn.Module):`:定义推荐模型,继承自 nn.Module 17. `def __init__(self, num_videos, embedding_dim):`:定义初始化函数,初始化推荐模型中的用户嵌入层、视频嵌入层和全连接层 18. `super(VideoRecommendationModel, self).__init__()`: 调用父类的初始化函数 19. `self.video_embedding = nn.Embedding(num_videos, embedding_dim)`: 定义视频嵌入层,输入维度为 num_videos,输出维度为 embedding_dim 20. `self.user_embedding = nn.Embedding(num_users, embedding_dim)`: 定义用户嵌入层,输入维度为 num_users,输出维度为 embedding_dim 21. `self.fc1 = nn.Linear(2 * embedding_dim, 64)`: 定义一个全连接层,输入维度为 2*embedding_dim,输出维度为 64 22. `self.fc2 = nn.Linear(64, 1)`: 定义一个全连接层,输入维度为 64,输出维度为 1 23. `def forward(self, user_ids, video_ids):`: 定义前向传播函数,将用户和视频 id 经过嵌入层和全连接层计算得到推荐评分 24. `user_embed = self.user_embedding(user_ids)`: 将用户 id 经过用户嵌入层得到用户嵌入 25. `video_embed = self.video_embedding(video_ids)`: 将视频 id 经过视频嵌入层得到视频嵌入 26. `x = torch.cat([user_embed, video_embed], dim=1)`: 将用户嵌入和视频嵌入拼接起来 27. `x = torch.relu(self.fc1(x))`: 将拼接后的结果经过激活函数和全连接层 28. `x = self.fc2(x)`: 将全连接层的输出作为推荐评分 29. `return torch.sigmoid(x)`: 将推荐评分经过 sigmoid 函数转换到 [0,1] 区间内 30. `data = np.load('video_data.npy')`: 从文件中读取数据 31. `num_users, num_videos, embedding_dim = data.shape`: 获取数据的形状,即用户数、视频数和嵌入维度 32. `train_data = torch.tensor(data[:int(0.8 * num_users)])`: 将前 80% 的数据作为训练集,并转换为 PyTorch 的 tensor 格式 33. `test_data = torch.tensor(data[int(0.8 * num_users):])`: 将后 20% 的数据作为测试集,并转换为 PyTorch 的 tensor 格式 34. `feature_extractor = VideoFeatureExtractor()`: 创建视频特征提取模型的实例 35. `recommendation_model = VideoRecommendationModel(num_videos, embedding_dim)`: 创建推荐模型的实例 36. `optimizer = optim.Adam(recommendation_model.parameters())`: 创建优化器,使用 Adam 算法优化推荐模型的参数 37. `for epoch in range(10):`: 开始训练,进行 10 轮迭代 38. `for user_ids, video_ids, ratings in train_data:`: 对训练集中的每个样本进行训练 39. `optimizer.zero_grad()`: 将梯度清零 40. `video_features = feature_extractor(video_ids)`: 提取视频特征 41. `ratings_pred = recommendation_model(user_ids, video_ids)`: 通过推荐模型得到预测评分 42. `loss = nn.BCELoss()(ratings_pred, ratings)`: 计算二分类交叉熵损失 43. `loss.backward()`: 反向传播求梯度 44. `optimizer.step()`: 更新模型参数 45. `test_ratings_pred = recommendation_model(test_data[:, 0], test_data[:, 1])`: 对测试集进行评分预测 46. `test_loss = nn.BCELoss()(test_ratings_pred, test_data[:, 2])`: 计算测试集上的损失 47. `test_accuracy = ((test_ratings_pred > 0.5).float() == test_data[:, 2]).float().mean()`: 计算测试集上的准确率 48. `print('Epoch %d: Test Loss %.4f, Test Accuracy %.4f' % (epoch, test_loss.item(), test_accuracy.item()))`: 输出每轮迭代的测试集损失和准确率

相关推荐

最新推荐

recommend-type

2107381120 王孟丽 实验2 (1).docx

2107381120 王孟丽 实验2 (1).docx
recommend-type

Java项目如何打成可以运行Jar包

Java项目如何打成可以运行Jar包
recommend-type

node-v12.22.8-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

海信 LED32K360X3D(0000)BOM1 自动重启问题软件升级数据 务必确认机编一致 强制刷机 整机USB升级程序

MT5505机芯升级方法: 1、下载数据,压缩包解压,升级软件文件夹名字为Hisense_5505,文件夹下包含“机型名.pkg”以及version.txt 2、将文件夹Hisense_5505,整个文件夹拷贝至U盘根目录下 3、电视关机,插入U盘(USB3或者靠近高频头的USB口),重新启动电视机,电视机自动检测到升级软件之后并进行升级 4、在升级过程中屏幕有相关提示,升级完成后能自动开机。(建议是升级完成之后拔下U盘设备以免下次开机进行重复性升级) 注意: 1、(U盘要求使用FAT32格式,建议4G-8G的品牌U盘,刷机成功率会高) 2、升级到结束,大约需要8-30分钟,中途绝对不能断电 3、升级重启第一次进入系统,请等完全正常进入开机桌面之后,才能拨下U盘 4、如无法升级,将Hisense 5505文件夹内“机型名.pkg”的文件重命名为“upgrade.pkg”,此时插上U盘开机,电视就会默认为强制升级模式
recommend-type

batik-awt-util-1.7.jar

Batik是为想使用svg格式图片来实现各种功能的应用程序和Applet提供的一个基于java的工具包
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。