c语言实验: 二叉树基本操作 实验要求: 1.按先序序列构造一棵二叉链表表示的二叉树T; 2.对这棵二叉树进行递归遍历:先序、中序、后序以及层次遍历遍历序列,分别输出结点的遍历序列; 3. 对这棵树用非递归方式进行遍历:先序、中序以及后序遍历序列,分别输出结点的遍历序列; 4.求二叉树的深度/结点数目/叶结点数目; 5.将二叉树每个结点的左右子树交换位置; 6. 设计二叉树的双序遍历算法(双序遍历是指对于二叉树的每一个结点来说,先访问这个结点,再按双序遍历它的左子树,然后再一次访问这个结点,接下来按双序遍历它的右子树); 7. 计算二叉树最大宽度(二叉树的最大宽度是指二叉树所有层中结点个数的最大值); 8. 求二叉树中第一条最长的路径长度,并输出此路径上各结点。

时间: 2023-11-27 09:51:57 浏览: 60
好的,这是一个比较全面的二叉树实验,需要实现多种操作。下面我将分步介绍如何实现这些操作。 1. 按先序序列构造一棵二叉链表表示的二叉树T 先序遍历的顺序是:根节点,左子树,右子树。我们可以利用这个顺序来构造二叉树。具体实现如下: ```c typedef struct TreeNode { char data; // 结点数据 struct TreeNode *lchild; // 左子树 struct TreeNode *rchild; // 右子树 } TreeNode, *Tree; Tree createTree() { char ch; scanf("%c", &ch); if (ch == '#') { // 以 '#' 表示空结点 return NULL; } Tree node = (Tree)malloc(sizeof(TreeNode)); node->data = ch; node->lchild = createTree(); node->rchild = createTree(); return node; } ``` 在调用 createTree 函数时,输入一个字符串,其中 '#' 表示空结点。例如输入:`AB#CD##E##`,则构造出的二叉树如下: ``` A / \ B C / \ D E ``` 2. 对这棵二叉树进行递归遍历 递归遍历二叉树的方法有很多种,这里我们实现先序、中序、后序和层次遍历。 ```c // 先序遍历 void preOrder(Tree T) { if (T == NULL) { return; } printf("%c ", T->data); preOrder(T->lchild); preOrder(T->rchild); } // 中序遍历 void inOrder(Tree T) { if (T == NULL) { return; } inOrder(T->lchild); printf("%c ", T->data); inOrder(T->rchild); } // 后序遍历 void postOrder(Tree T) { if (T == NULL) { return; } postOrder(T->lchild); postOrder(T->rchild); printf("%c ", T->data); } // 层次遍历 void levelOrder(Tree T) { if (T == NULL) { return; } Queue q; initQueue(&q); enQueue(&q, T); while (!isQueueEmpty(q)) { Tree node = deQueue(&q); printf("%c ", node->data); if (node->lchild != NULL) { enQueue(&q, node->lchild); } if (node->rchild != NULL) { enQueue(&q, node->rchild); } } } ``` 其中,Queue 是一个队列结构体,可以用数组实现。initQueue 函数用来初始化队列,enQueue 函数用来入队,deQueue 函数用来出队,isQueueEmpty 函数用来判断队列是否为空。 3. 对这棵树用非递归方式进行遍历 除了递归遍历,我们还可以用非递归的方式来遍历二叉树。这里我们实现先序、中序和后序遍历。 ```c // 非递归先序遍历 void preOrderNonRecursive(Tree T) { Stack s; initStack(&s); push(&s, T); while (!isStackEmpty(s)) { Tree node = pop(&s); printf("%c ", node->data); if (node->rchild != NULL) { push(&s, node->rchild); } if (node->lchild != NULL) { push(&s, node->lchild); } } } // 非递归中序遍历 void inOrderNonRecursive(Tree T) { Stack s; initStack(&s); Tree p = T; while (p != NULL || !isStackEmpty(s)) { while (p != NULL) { push(&s, p); p = p->lchild; } if (!isStackEmpty(s)) { p = pop(&s); printf("%c ", p->data); p = p->rchild; } } } // 非递归后序遍历 void postOrderNonRecursive(Tree T) { Stack s; initStack(&s); Tree p = T, lastVisit = NULL; while (p != NULL || !isStackEmpty(s)) { while (p != NULL) { push(&s, p); p = p->lchild; } p = getTop(s); if (p->rchild == NULL || p->rchild == lastVisit) { printf("%c ", p->data); pop(&s); lastVisit = p; p = NULL; } else { p = p->rchild; } } } ``` 其中,Stack 是一个栈结构体,可以用数组实现。initStack 函数用来初始化栈,push 函数用来入栈,pop 函数用来出栈,getTop 函数用来获取栈顶元素,isStackEmpty 函数用来判断栈是否为空。 4. 求二叉树的深度/结点数目/叶结点数目 求二叉树的深度、结点数目和叶结点数目都可以用递归的方式实现。具体实现如下: ```c // 求二叉树深度 int getTreeDepth(Tree T) { if (T == NULL) { return 0; } int leftDepth = getTreeDepth(T->lchild); int rightDepth = getTreeDepth(T->rchild); return (leftDepth > rightDepth) ? (leftDepth + 1) : (rightDepth + 1); } // 求二叉树结点数目 int getNodeCount(Tree T) { if (T == NULL) { return 0; } return getNodeCount(T->lchild) + getNodeCount(T->rchild) + 1; } // 求二叉树叶结点数目 int getLeafCount(Tree T) { if (T == NULL) { return 0; } if (T->lchild == NULL && T->rchild == NULL) { return 1; } return getLeafCount(T->lchild) + getLeafCount(T->rchild); } ``` 5. 将二叉树每个结点的左右子树交换位置 交换二叉树每个结点的左右子树只需要递归交换左右子树即可。具体实现如下: ```c void swapTree(Tree T) { if (T == NULL) { return; } Tree tmp = T->lchild; T->lchild = T->rchild; T->rchild = tmp; swapTree(T->lchild); swapTree(T->rchild); } ``` 6. 设计二叉树的双序遍历算法 二叉树的双序遍历可以通过先序遍历和后序遍历来实现。具体实现如下: ```c void doubleOrder(Tree T) { if (T == NULL) { return; } printf("%c ", T->data); doubleOrder(T->lchild); printf("%c ", T->data); doubleOrder(T->rchild); } ``` 7. 计算二叉树最大宽度 计算二叉树最大宽度可以用层次遍历的方式实现。具体实现如下: ```c int getMaxWidth(Tree T) { if (T == NULL) { return 0; } Queue q; initQueue(&q); enQueue(&q, T); int maxWidth = 0; while (!isQueueEmpty(q)) { int size = q.size; maxWidth = (size > maxWidth) ? size : maxWidth; while (size--) { Tree node = deQueue(&q); if (node->lchild != NULL) { enQueue(&q, node->lchild); } if (node->rchild != NULL) { enQueue(&q, node->rchild); } } } return maxWidth; } ``` 8. 求二叉树中第一条最长的路径长度,并输出此路径上各结点 求二叉树中第一条最长的路径长度可以用递归的方式实现。具体实现如下: ```c int getLongestPath(Tree T, Tree *path) { if (T == NULL) { return 0; } Tree leftPath[MAX_TREE_DEPTH], rightPath[MAX_TREE_DEPTH]; int leftPathLen = getLongestPath(T->lchild, leftPath); int rightPathLen = getLongestPath(T->rchild, rightPath); if (leftPathLen >= rightPathLen) { leftPath[leftPathLen++] = T; *path = leftPath[leftPathLen-1]; memcpy(path+1, leftPath, sizeof(Tree)*leftPathLen); return leftPathLen; } else { rightPath[rightPathLen++] = T; *path = rightPath[rightPathLen-1]; memcpy(path+1, rightPath, sizeof(Tree)*rightPathLen); return rightPathLen; } } ``` 其中,path 是一个指向结点的指针数组,用来存储最长路径上的结点。 完整代码:

相关推荐

最新推荐

recommend-type

setuptools-40.7.3-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Centos7-离线安装redis

Centos7-离线安装redis
recommend-type

setuptools-39.0.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于JSP实现的在线仓库管理系统源码.zip

这个是一个JSP实现的在线仓库管理系统,管理员角色包含以下功能:仓库管理员登录,货品&类别信息管理,采购信息管理,出库和入库管理,财务信息管理,管理员管理等功能。 本项目实现的最终作用是基于JSP实现的在线仓库管理系统 分为1个角色 第1个角色为管理员角色,实现了如下功能: - 仓库管理员登录 - 出库和入库管理 - 管理员管理 - 财务信息管理 - 货品&类别信息管理 - 采购信息管理
recommend-type

基于springboot的房屋租赁系统

开发语言:Java JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.6/5.7(或8.0) 数据库工具:Navicat 开发软件:idea 依赖管理包:Maven 代码+数据库保证完整可用,可提供远程调试并指导运行服务(额外付费)~ 如果对系统的中的某些部分感到不合适可提供修改服务,比如题目、界面、功能等等... 声明: 1.项目已经调试过,完美运行 2.需要远程帮忙部署项目,需要额外付费 3.本项目有演示视频,如果需要观看,请联系我v:19306446185 4.调试过程中可帮忙安装IDEA,eclipse,MySQL,JDK,Tomcat等软件 重点: 需要其他Java源码联系我,更多源码任你选,你想要的源码我都有! https://img-blog.csdnimg.cn/direct/e73dc0ac8d27434b86d886db5a438c71.jpeg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。