python 中如何调用Transformer注意力机制
时间: 2023-12-20 22:53:08 浏览: 131
在Python中,您可以使用PyTorch等深度学习框架中的Transformer模型来实现注意力机制。下面是一些使用PyTorch实现注意力机制的示例代码:
1. 自注意力机制(Self-Attention)
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SelfAttention(nn.Module):
def __init__(self, embed_dim):
super(SelfAttention, self).__init__()
self.embed_dim = embed_dim
self.q_linear = nn.Linear(embed_dim, embed_dim)
self.k_linear = nn.Linear(embed_dim, embed_dim)
self.v_linear = nn.Linear(embed_dim, embed_dim)
def forward(self, x):
q = self.q_linear(x)
k = self.k_linear(x)
v = self.v_linear(x)
# 计算注意力得分
scores = torch.matmul(q, k.transpose(-2, -1)) / np.sqrt(self.embed_dim)
# 将得分归一化
scores = F.softmax(scores, dim=-1)
# 加权求和
output = torch.matmul(scores, v)
return output
```
2. 多头注意力机制(Multi-Head Attention)
```python
class MultiHeadAttention(nn.Module):
def __init__(self, embed_dim, num_heads):
super(MultiHeadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
# 分别对输入进行线性变换
self.q_linear = nn.Linear(embed_dim, embed_dim)
self.k_linear = nn.Linear(embed_dim, embed_dim)
self.v_linear = nn.Linear(embed_dim, embed_dim)
# 将多头注意力的输出进行线性变换
self.output_linear = nn.Linear(embed_dim, embed_dim)
def forward(self, x):
batch_size = x.size(0)
# 分别对输入进行线性变换
q = self.q_linear(x)
k = self.k_linear(x)
v = self.v_linear(x)
# 将输入进行分割
q = q.view(batch_size, -1, self.num_heads, self.embed_dim // self.num_heads).transpose(1, 2)
k = k.view(batch_size, -1, self.num_heads, self.embed_dim // self.num_heads).transpose(1, 2)
v = v.view(batch_size, -1, self.num_heads, self.embed_dim // self.num_heads).transpose(1, 2)
# 计算注意力得分
scores = torch.matmul(q, k.transpose(-2, -1)) / np.sqrt(self.embed_dim // self.num_heads)
# 将得分归一化
scores = F.softmax(scores, dim=-1)
# 加权求和
output = torch.matmul(scores, v)
# 将多头注意力的输出进行拼接
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.embed_dim)
# 进行线性变换
output = self.output_linear(output)
return output
```
以上代码中,SelfAttention是实现自注意力机制的类,MultiHeadAttention是实现多头注意力机制的类。这两个类都继承自nn.Module类,可以作为PyTorch中的一个模块进行调用。
阅读全文
相关推荐
















